Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeval2 Structured version   Visualization version   GIF version

Theorem madeval2 34037
Description: Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval2 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
Distinct variable group:   𝑥,𝐴,𝑎,𝑏

Proof of Theorem madeval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 madeval 34036 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
2 scutcl 33996 . . . . . . . 8 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) ∈ No )
3 eleq1 2826 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
43biimpd 228 . . . . . . . 8 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
52, 4mpan9 507 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
65rexlimivw 3211 . . . . . 6 (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
76rexlimivw 3211 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
87pm4.71ri 561 . . . 4 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
98abbii 2808 . . 3 {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
10 eleq1 2826 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 ∈ <<s ↔ ⟨𝑎, 𝑏⟩ ∈ <<s ))
11 breq1 5077 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 |s 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
1210, 11anbi12d 631 . . . . . 6 (𝑦 = ⟨𝑎, 𝑏⟩ → ((𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥)))
1312rexxp 5751 . . . . 5 (∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
14 imaindm 33753 . . . . . . . 8 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ))
15 dmscut 34005 . . . . . . . . . 10 dom |s = <<s
1615ineq2i 4143 . . . . . . . . 9 ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ) = ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )
1716imaeq2i 5967 . . . . . . . 8 ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s )) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
1814, 17eqtri 2766 . . . . . . 7 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
1918eleq2i 2830 . . . . . 6 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ 𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )))
20 vex 3436 . . . . . . 7 𝑥 ∈ V
2120elima 5974 . . . . . 6 (𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )) ↔ ∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥)
22 elin 3903 . . . . . . . . 9 (𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ))
2322anbi1i 624 . . . . . . . 8 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ ((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥))
24 anass 469 . . . . . . . 8 (((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2523, 24bitri 274 . . . . . . 7 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2625rexbii2 3179 . . . . . 6 (∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥 ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
2719, 21, 263bitri 297 . . . . 5 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
28 df-br 5075 . . . . . . . 8 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
2928anbi1i 624 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥))
30 df-ov 7278 . . . . . . . . . 10 (𝑎 |s 𝑏) = ( |s ‘⟨𝑎, 𝑏⟩)
3130eqeq1i 2743 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 ↔ ( |s ‘⟨𝑎, 𝑏⟩) = 𝑥)
32 scutf 34006 . . . . . . . . . . 11 |s : <<s ⟶ No
33 ffn 6600 . . . . . . . . . . 11 ( |s : <<s ⟶ No → |s Fn <<s )
3432, 33ax-mp 5 . . . . . . . . . 10 |s Fn <<s
35 fnbrfvb 6822 . . . . . . . . . 10 (( |s Fn <<s ∧ ⟨𝑎, 𝑏⟩ ∈ <<s ) → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3634, 35mpan 687 . . . . . . . . 9 (⟨𝑎, 𝑏⟩ ∈ <<s → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3731, 36syl5bb 283 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ <<s → ((𝑎 |s 𝑏) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3837pm5.32i 575 . . . . . . 7 ((⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
3929, 38bitri 274 . . . . . 6 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
40392rexbii 3182 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
4113, 27, 403bitr4i 303 . . . 4 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))
4241abbi2i 2879 . . 3 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
43 df-rab 3073 . . 3 {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
449, 42, 433eqtr4i 2776 . 2 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
451, 44eqtrdi 2794 1 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  {crab 3068  cin 3886  𝒫 cpw 4533  cop 4567   cuni 4839   class class class wbr 5074   × cxp 5587  dom cdm 5589  cima 5592  Oncon0 6266   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275   No csur 33843   <<s csslt 33975   |s cscut 33977   M cmade 34026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031
This theorem is referenced by:  madef  34040  elmade  34051  made0  34057  madess  34059
  Copyright terms: Public domain W3C validator