MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madeval2 Structured version   Visualization version   GIF version

Theorem madeval2 27348
Description: Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval2 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
Distinct variable group:   𝑥,𝐴,𝑎,𝑏

Proof of Theorem madeval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 madeval 27347 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
2 scutcl 27303 . . . . . . . 8 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) ∈ No )
3 eleq1 2822 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
43biimpd 228 . . . . . . . 8 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
52, 4mpan9 508 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
65rexlimivw 3152 . . . . . 6 (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
76rexlimivw 3152 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
87pm4.71ri 562 . . . 4 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
98abbii 2803 . . 3 {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
10 eleq1 2822 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 ∈ <<s ↔ ⟨𝑎, 𝑏⟩ ∈ <<s ))
11 breq1 5152 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 |s 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
1210, 11anbi12d 632 . . . . . 6 (𝑦 = ⟨𝑎, 𝑏⟩ → ((𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥)))
1312rexxp 5843 . . . . 5 (∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
14 imaindm 6299 . . . . . . . 8 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ))
15 dmscut 27312 . . . . . . . . . 10 dom |s = <<s
1615ineq2i 4210 . . . . . . . . 9 ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ) = ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )
1716imaeq2i 6058 . . . . . . . 8 ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s )) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
1814, 17eqtri 2761 . . . . . . 7 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
1918eleq2i 2826 . . . . . 6 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ 𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )))
20 vex 3479 . . . . . . 7 𝑥 ∈ V
2120elima 6065 . . . . . 6 (𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )) ↔ ∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥)
22 elin 3965 . . . . . . . . 9 (𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ))
2322anbi1i 625 . . . . . . . 8 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ ((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥))
24 anass 470 . . . . . . . 8 (((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2523, 24bitri 275 . . . . . . 7 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2625rexbii2 3091 . . . . . 6 (∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥 ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
2719, 21, 263bitri 297 . . . . 5 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
28 df-br 5150 . . . . . . . 8 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
2928anbi1i 625 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥))
30 df-ov 7412 . . . . . . . . . 10 (𝑎 |s 𝑏) = ( |s ‘⟨𝑎, 𝑏⟩)
3130eqeq1i 2738 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 ↔ ( |s ‘⟨𝑎, 𝑏⟩) = 𝑥)
32 scutf 27313 . . . . . . . . . . 11 |s : <<s ⟶ No
33 ffn 6718 . . . . . . . . . . 11 ( |s : <<s ⟶ No → |s Fn <<s )
3432, 33ax-mp 5 . . . . . . . . . 10 |s Fn <<s
35 fnbrfvb 6945 . . . . . . . . . 10 (( |s Fn <<s ∧ ⟨𝑎, 𝑏⟩ ∈ <<s ) → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3634, 35mpan 689 . . . . . . . . 9 (⟨𝑎, 𝑏⟩ ∈ <<s → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3731, 36bitrid 283 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ <<s → ((𝑎 |s 𝑏) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3837pm5.32i 576 . . . . . . 7 ((⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
3929, 38bitri 275 . . . . . 6 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
40392rexbii 3130 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
4113, 27, 403bitr4i 303 . . . 4 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))
4241eqabi 2870 . . 3 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
43 df-rab 3434 . . 3 {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
449, 42, 433eqtr4i 2771 . 2 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
451, 44eqtrdi 2789 1 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  {crab 3433  cin 3948  𝒫 cpw 4603  cop 4635   cuni 4909   class class class wbr 5149   × cxp 5675  dom cdm 5677  cima 5680  Oncon0 6365   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7409   No csur 27143   <<s csslt 27282   |s cscut 27284   M cmade 27337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148  df-sslt 27283  df-scut 27285  df-made 27342
This theorem is referenced by:  madef  27351  elmade  27362  made0  27368  madess  27371
  Copyright terms: Public domain W3C validator