Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeval2 Structured version   Visualization version   GIF version

 Description: Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval2 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
Distinct variable group:   𝑥,𝐴,𝑎,𝑏

Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 madeval 33618 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
2 scutcl 33579 . . . . . . . 8 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) ∈ No )
3 eleq1 2839 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
43biimpd 232 . . . . . . . 8 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
52, 4mpan9 510 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
65rexlimivw 3206 . . . . . 6 (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
76rexlimivw 3206 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
87pm4.71ri 564 . . . 4 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
98abbii 2823 . . 3 {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
10 eleq1 2839 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 ∈ <<s ↔ ⟨𝑎, 𝑏⟩ ∈ <<s ))
11 breq1 5035 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 |s 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
1210, 11anbi12d 633 . . . . . 6 (𝑦 = ⟨𝑎, 𝑏⟩ → ((𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥)))
1312rexxp 5682 . . . . 5 (∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
14 imaindm 33269 . . . . . . . 8 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ))
15 dmscut 33588 . . . . . . . . . 10 dom |s = <<s
1615ineq2i 4114 . . . . . . . . 9 ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ) = ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )
1716imaeq2i 5899 . . . . . . . 8 ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s )) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
1814, 17eqtri 2781 . . . . . . 7 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
1918eleq2i 2843 . . . . . 6 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ 𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )))
20 vex 3413 . . . . . . 7 𝑥 ∈ V
2120elima 5906 . . . . . 6 (𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )) ↔ ∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥)
22 elin 3874 . . . . . . . . 9 (𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ))
2322anbi1i 626 . . . . . . . 8 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ ((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥))
24 anass 472 . . . . . . . 8 (((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2523, 24bitri 278 . . . . . . 7 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2625rexbii2 3173 . . . . . 6 (∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥 ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
2719, 21, 263bitri 300 . . . . 5 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
28 df-br 5033 . . . . . . . 8 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
2928anbi1i 626 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥))
30 df-ov 7153 . . . . . . . . . 10 (𝑎 |s 𝑏) = ( |s ‘⟨𝑎, 𝑏⟩)
3130eqeq1i 2763 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 ↔ ( |s ‘⟨𝑎, 𝑏⟩) = 𝑥)
32 scutf 33589 . . . . . . . . . . 11 |s : <<s ⟶ No
33 ffn 6498 . . . . . . . . . . 11 ( |s : <<s ⟶ No → |s Fn <<s )
3432, 33ax-mp 5 . . . . . . . . . 10 |s Fn <<s
35 fnbrfvb 6706 . . . . . . . . . 10 (( |s Fn <<s ∧ ⟨𝑎, 𝑏⟩ ∈ <<s ) → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3634, 35mpan 689 . . . . . . . . 9 (⟨𝑎, 𝑏⟩ ∈ <<s → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3731, 36syl5bb 286 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ <<s → ((𝑎 |s 𝑏) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3837pm5.32i 578 . . . . . . 7 ((⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
3929, 38bitri 278 . . . . . 6 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
40392rexbii 3176 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
4113, 27, 403bitr4i 306 . . . 4 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))
4241abbi2i 2891 . . 3 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
43 df-rab 3079 . . 3 {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
449, 42, 433eqtr4i 2791 . 2 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
451, 44eqtrdi 2809 1 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2735  ∃wrex 3071  {crab 3074   ∩ cin 3857  𝒫 cpw 4494  ⟨cop 4528  ∪ cuni 4798   class class class wbr 5032   × cxp 5522  dom cdm 5524   “ cima 5527  Oncon0 6169   Fn wfn 6330  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150   No csur 33428   <
 Copyright terms: Public domain W3C validator