| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indcthing | Structured version Visualization version GIF version | ||
| Description: An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025.) |
| Ref | Expression |
|---|---|
| indcthing.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| indcthing.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| indcthing.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| indcthing.i | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = {𝐹}) |
| Ref | Expression |
|---|---|
| indcthing | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcthing.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 2 | indcthing.h | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 3 | eqid 2735 | . . . 4 ⊢ {𝐹} = {𝐹} | |
| 4 | mosn 48739 | . . . 4 ⊢ ({𝐹} = {𝐹} → ∃*𝑓 𝑓 ∈ {𝐹}) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ∃*𝑓 𝑓 ∈ {𝐹} |
| 6 | indcthing.i | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = {𝐹}) | |
| 7 | 6 | eleq2d 2820 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ {𝐹})) |
| 8 | 7 | mobidv 2548 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ {𝐹})) |
| 9 | 5, 8 | mpbiri 258 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 10 | indcthing.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 11 | 1, 2, 9, 10 | isthincd 49270 | 1 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃*wmo 2537 {csn 4601 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 Catccat 17674 ThinCatcthinc 49251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-thinc 49252 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |