| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indcthing | Structured version Visualization version GIF version | ||
| Description: An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025.) |
| Ref | Expression |
|---|---|
| indcthing.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| indcthing.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| indcthing.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| indcthing.i | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = {𝐹}) |
| Ref | Expression |
|---|---|
| indcthing | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcthing.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 2 | indcthing.h | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 3 | eqid 2729 | . . . 4 ⊢ {𝐹} = {𝐹} | |
| 4 | mosn 48798 | . . . 4 ⊢ ({𝐹} = {𝐹} → ∃*𝑓 𝑓 ∈ {𝐹}) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ∃*𝑓 𝑓 ∈ {𝐹} |
| 6 | indcthing.i | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = {𝐹}) | |
| 7 | 6 | eleq2d 2814 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ {𝐹})) |
| 8 | 7 | mobidv 2542 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ {𝐹})) |
| 9 | 5, 8 | mpbiri 258 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 10 | indcthing.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 11 | 1, 2, 9, 10 | isthincd 49422 | 1 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Catccat 17588 ThinCatcthinc 49403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-thinc 49404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |