Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indcthing Structured version   Visualization version   GIF version

Theorem indcthing 49453
Description: An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025.)
Hypotheses
Ref Expression
indcthing.b (𝜑𝐵 = (Base‘𝐶))
indcthing.h (𝜑𝐻 = (Hom ‘𝐶))
indcthing.c (𝜑𝐶 ∈ Cat)
indcthing.i ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = {𝐹})
Assertion
Ref Expression
indcthing (𝜑𝐶 ∈ ThinCat)
Distinct variable groups:   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem indcthing
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 indcthing.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 indcthing.h . 2 (𝜑𝐻 = (Hom ‘𝐶))
3 eqid 2730 . . . 4 {𝐹} = {𝐹}
4 mosn 48805 . . . 4 ({𝐹} = {𝐹} → ∃*𝑓 𝑓 ∈ {𝐹})
53, 4ax-mp 5 . . 3 ∃*𝑓 𝑓 ∈ {𝐹}
6 indcthing.i . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = {𝐹})
76eleq2d 2815 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ {𝐹}))
87mobidv 2543 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ {𝐹}))
95, 8mpbiri 258 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
10 indcthing.c . 2 (𝜑𝐶 ∈ Cat)
111, 2, 9, 10isthincd 49429 1 (𝜑𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-thinc 49411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator