Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discthing Structured version   Visualization version   GIF version

Theorem discthing 49454
Description: A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 11-Nov-2025.)
Hypotheses
Ref Expression
indcthing.b (𝜑𝐵 = (Base‘𝐶))
indcthing.h (𝜑𝐻 = (Hom ‘𝐶))
indcthing.c (𝜑𝐶 ∈ Cat)
discthing.i ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅))
Assertion
Ref Expression
discthing (𝜑𝐶 ∈ ThinCat)
Distinct variable groups:   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem discthing
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 indcthing.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 indcthing.h . 2 (𝜑𝐻 = (Hom ‘𝐶))
3 eleq2w2 2726 . . . . 5 ({𝐼} = if(𝑥 = 𝑦, {𝐼}, ∅) → (𝑖 ∈ {𝐼} ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
43mobidv 2543 . . . 4 ({𝐼} = if(𝑥 = 𝑦, {𝐼}, ∅) → (∃*𝑖 𝑖 ∈ {𝐼} ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
5 eleq2w2 2726 . . . . 5 (∅ = if(𝑥 = 𝑦, {𝐼}, ∅) → (𝑖 ∈ ∅ ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
65mobidv 2543 . . . 4 (∅ = if(𝑥 = 𝑦, {𝐼}, ∅) → (∃*𝑖 𝑖 ∈ ∅ ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
7 eqid 2730 . . . . 5 {𝐼} = {𝐼}
8 mosn 48805 . . . . 5 ({𝐼} = {𝐼} → ∃*𝑖 𝑖 ∈ {𝐼})
97, 8mp1i 13 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑥 = 𝑦) → ∃*𝑖 𝑖 ∈ {𝐼})
10 eqid 2730 . . . . 5 ∅ = ∅
11 mo0 48806 . . . . 5 (∅ = ∅ → ∃*𝑖 𝑖 ∈ ∅)
1210, 11mp1i 13 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ 𝑥 = 𝑦) → ∃*𝑖 𝑖 ∈ ∅)
134, 6, 9, 12ifbothda 4530 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))
14 discthing.i . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅))
1514eleq2d 2815 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖 ∈ (𝑥𝐻𝑦) ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
1615mobidv 2543 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (∃*𝑖 𝑖 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
1713, 16mpbird 257 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑖 𝑖 ∈ (𝑥𝐻𝑦))
18 indcthing.c . 2 (𝜑𝐶 ∈ Cat)
191, 2, 17, 18isthincd 49429 1 (𝜑𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  c0 4299  ifcif 4491  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-thinc 49411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator