Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discthing Structured version   Visualization version   GIF version

Theorem discthing 49295
Description: A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 11-Nov-2025.)
Hypotheses
Ref Expression
indcthing.b (𝜑𝐵 = (Base‘𝐶))
indcthing.h (𝜑𝐻 = (Hom ‘𝐶))
indcthing.c (𝜑𝐶 ∈ Cat)
discthing.i ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅))
Assertion
Ref Expression
discthing (𝜑𝐶 ∈ ThinCat)
Distinct variable groups:   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem discthing
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 indcthing.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 indcthing.h . 2 (𝜑𝐻 = (Hom ‘𝐶))
3 eleq2w2 2731 . . . . 5 ({𝐼} = if(𝑥 = 𝑦, {𝐼}, ∅) → (𝑖 ∈ {𝐼} ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
43mobidv 2548 . . . 4 ({𝐼} = if(𝑥 = 𝑦, {𝐼}, ∅) → (∃*𝑖 𝑖 ∈ {𝐼} ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
5 eleq2w2 2731 . . . . 5 (∅ = if(𝑥 = 𝑦, {𝐼}, ∅) → (𝑖 ∈ ∅ ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
65mobidv 2548 . . . 4 (∅ = if(𝑥 = 𝑦, {𝐼}, ∅) → (∃*𝑖 𝑖 ∈ ∅ ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
7 eqid 2735 . . . . 5 {𝐼} = {𝐼}
8 mosn 48739 . . . . 5 ({𝐼} = {𝐼} → ∃*𝑖 𝑖 ∈ {𝐼})
97, 8mp1i 13 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑥 = 𝑦) → ∃*𝑖 𝑖 ∈ {𝐼})
10 eqid 2735 . . . . 5 ∅ = ∅
11 mo0 48740 . . . . 5 (∅ = ∅ → ∃*𝑖 𝑖 ∈ ∅)
1210, 11mp1i 13 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ 𝑥 = 𝑦) → ∃*𝑖 𝑖 ∈ ∅)
134, 6, 9, 12ifbothda 4539 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))
14 discthing.i . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅))
1514eleq2d 2820 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖 ∈ (𝑥𝐻𝑦) ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
1615mobidv 2548 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (∃*𝑖 𝑖 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)))
1713, 16mpbird 257 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑖 𝑖 ∈ (𝑥𝐻𝑦))
18 indcthing.c . 2 (𝜑𝐶 ∈ Cat)
191, 2, 17, 18isthincd 49270 1 (𝜑𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  ∃*wmo 2537  c0 4308  ifcif 4500  {csn 4601  cfv 6530  (class class class)co 7403  Basecbs 17226  Hom chom 17280  Catccat 17674  ThinCatcthinc 49251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-thinc 49252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator