| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > discthing | Structured version Visualization version GIF version | ||
| Description: A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 11-Nov-2025.) |
| Ref | Expression |
|---|---|
| indcthing.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| indcthing.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| indcthing.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| discthing.i | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅)) |
| Ref | Expression |
|---|---|
| discthing | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcthing.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 2 | indcthing.h | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 3 | eleq2w2 2729 | . . . . 5 ⊢ ({𝐼} = if(𝑥 = 𝑦, {𝐼}, ∅) → (𝑖 ∈ {𝐼} ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))) | |
| 4 | 3 | mobidv 2546 | . . . 4 ⊢ ({𝐼} = if(𝑥 = 𝑦, {𝐼}, ∅) → (∃*𝑖 𝑖 ∈ {𝐼} ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))) |
| 5 | eleq2w2 2729 | . . . . 5 ⊢ (∅ = if(𝑥 = 𝑦, {𝐼}, ∅) → (𝑖 ∈ ∅ ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))) | |
| 6 | 5 | mobidv 2546 | . . . 4 ⊢ (∅ = if(𝑥 = 𝑦, {𝐼}, ∅) → (∃*𝑖 𝑖 ∈ ∅ ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))) |
| 7 | eqid 2733 | . . . . 5 ⊢ {𝐼} = {𝐼} | |
| 8 | mosn 48937 | . . . . 5 ⊢ ({𝐼} = {𝐼} → ∃*𝑖 𝑖 ∈ {𝐼}) | |
| 9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 = 𝑦) → ∃*𝑖 𝑖 ∈ {𝐼}) |
| 10 | eqid 2733 | . . . . 5 ⊢ ∅ = ∅ | |
| 11 | mo0 48938 | . . . . 5 ⊢ (∅ = ∅ → ∃*𝑖 𝑖 ∈ ∅) | |
| 12 | 10, 11 | mp1i 13 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ¬ 𝑥 = 𝑦) → ∃*𝑖 𝑖 ∈ ∅) |
| 13 | 4, 6, 9, 12 | ifbothda 4513 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅)) |
| 14 | discthing.i | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅)) | |
| 15 | 14 | eleq2d 2819 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ (𝑥𝐻𝑦) ↔ 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))) |
| 16 | 15 | mobidv 2546 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃*𝑖 𝑖 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑖 𝑖 ∈ if(𝑥 = 𝑦, {𝐼}, ∅))) |
| 17 | 13, 16 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑖 𝑖 ∈ (𝑥𝐻𝑦)) |
| 18 | indcthing.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 19 | 1, 2, 17, 18 | isthincd 49561 | 1 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃*wmo 2535 ∅c0 4282 ifcif 4474 {csn 4575 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 Catccat 17572 ThinCatcthinc 49542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-thinc 49543 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |