| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isthincd | Structured version Visualization version GIF version | ||
| Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| isthincd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| isthincd.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| isthincd.t | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| isthincd.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| isthincd | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isthincd.t | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) | |
| 3 | 2 | ralrimivva 3172 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 4 | isthincd.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 5 | isthincd.h | . . . . . . . 8 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 6 | 5 | oveqd 7370 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
| 7 | 6 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
| 8 | 7 | mobidv 2542 | . . . . 5 ⊢ (𝜑 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
| 9 | 4, 8 | raleqbidv 3310 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
| 10 | 4, 9 | raleqbidv 3310 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
| 11 | 3, 10 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 12 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 13 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 12, 13 | isthinc 49405 | . 2 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
| 15 | 1, 11, 14 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Catccat 17588 ThinCatcthinc 49403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-thinc 49404 |
| This theorem is referenced by: isthincd2 49423 oppcthin 49424 subthinc 49429 thincciso2 49441 indcthing 49446 discthing 49447 setcthin 49451 idfudiag1 49511 arweuthinc 49515 funcsn 49527 0fucterm 49529 |
| Copyright terms: Public domain | W3C validator |