Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthincd Structured version   Visualization version   GIF version

Theorem isthincd 46206
Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd.b (𝜑𝐵 = (Base‘𝐶))
isthincd.h (𝜑𝐻 = (Hom ‘𝐶))
isthincd.t ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
isthincd.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
isthincd (𝜑𝐶 ∈ ThinCat)
Distinct variable groups:   𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝐻(𝑥,𝑦,𝑓)

Proof of Theorem isthincd
StepHypRef Expression
1 isthincd.c . 2 (𝜑𝐶 ∈ Cat)
2 isthincd.t . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
32ralrimivva 3114 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
4 isthincd.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
5 isthincd.h . . . . . . . 8 (𝜑𝐻 = (Hom ‘𝐶))
65oveqd 7272 . . . . . . 7 (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
76eleq2d 2824 . . . . . 6 (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
87mobidv 2549 . . . . 5 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
94, 8raleqbidv 3327 . . . 4 (𝜑 → (∀𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
104, 9raleqbidv 3327 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
113, 10mpbid 231 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
12 eqid 2738 . . 3 (Base‘𝐶) = (Base‘𝐶)
13 eqid 2738 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
1412, 13isthinc 46190 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
151, 11, 14sylanbrc 582 1 (𝜑𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Catccat 17290  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-thinc 46189
This theorem is referenced by:  isthincd2  46207  oppcthin  46208  subthinc  46209  setcthin  46224
  Copyright terms: Public domain W3C validator