Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isthincd | Structured version Visualization version GIF version |
Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
Ref | Expression |
---|---|
isthincd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
isthincd.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
isthincd.t | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
isthincd.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
isthincd | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isthincd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isthincd.t | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) | |
3 | 2 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
4 | isthincd.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
5 | isthincd.h | . . . . . . . 8 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
6 | 5 | oveqd 7272 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
7 | 6 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
8 | 7 | mobidv 2549 | . . . . 5 ⊢ (𝜑 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
9 | 4, 8 | raleqbidv 3327 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
10 | 4, 9 | raleqbidv 3327 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
11 | 3, 10 | mpbid 231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
12 | eqid 2738 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
13 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
14 | 12, 13 | isthinc 46190 | . 2 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
15 | 1, 11, 14 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 Catccat 17290 ThinCatcthinc 46188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-thinc 46189 |
This theorem is referenced by: isthincd2 46207 oppcthin 46208 subthinc 46209 setcthin 46224 |
Copyright terms: Public domain | W3C validator |