Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthincd Structured version   Visualization version   GIF version

Theorem isthincd 49429
Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd.b (𝜑𝐵 = (Base‘𝐶))
isthincd.h (𝜑𝐻 = (Hom ‘𝐶))
isthincd.t ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
isthincd.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
isthincd (𝜑𝐶 ∈ ThinCat)
Distinct variable groups:   𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝐻(𝑥,𝑦,𝑓)

Proof of Theorem isthincd
StepHypRef Expression
1 isthincd.c . 2 (𝜑𝐶 ∈ Cat)
2 isthincd.t . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
32ralrimivva 3181 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
4 isthincd.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
5 isthincd.h . . . . . . . 8 (𝜑𝐻 = (Hom ‘𝐶))
65oveqd 7407 . . . . . . 7 (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
76eleq2d 2815 . . . . . 6 (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
87mobidv 2543 . . . . 5 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
94, 8raleqbidv 3321 . . . 4 (𝜑 → (∀𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
104, 9raleqbidv 3321 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
113, 10mpbid 232 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
12 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
13 eqid 2730 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
1412, 13isthinc 49412 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
151, 11, 14sylanbrc 583 1 (𝜑𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-thinc 49411
This theorem is referenced by:  isthincd2  49430  oppcthin  49431  subthinc  49436  thincciso2  49448  indcthing  49453  discthing  49454  setcthin  49458  idfudiag1  49518  arweuthinc  49522  funcsn  49534  0fucterm  49536
  Copyright terms: Public domain W3C validator