Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthincd Structured version   Visualization version   GIF version

Theorem isthincd 49422
Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd.b (𝜑𝐵 = (Base‘𝐶))
isthincd.h (𝜑𝐻 = (Hom ‘𝐶))
isthincd.t ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
isthincd.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
isthincd (𝜑𝐶 ∈ ThinCat)
Distinct variable groups:   𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝐻(𝑥,𝑦,𝑓)

Proof of Theorem isthincd
StepHypRef Expression
1 isthincd.c . 2 (𝜑𝐶 ∈ Cat)
2 isthincd.t . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
32ralrimivva 3172 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
4 isthincd.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
5 isthincd.h . . . . . . . 8 (𝜑𝐻 = (Hom ‘𝐶))
65oveqd 7370 . . . . . . 7 (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
76eleq2d 2814 . . . . . 6 (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
87mobidv 2542 . . . . 5 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
94, 8raleqbidv 3310 . . . 4 (𝜑 → (∀𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
104, 9raleqbidv 3310 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
113, 10mpbid 232 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
12 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
13 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
1412, 13isthinc 49405 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
151, 11, 14sylanbrc 583 1 (𝜑𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  wral 3044  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  Catccat 17588  ThinCatcthinc 49403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-thinc 49404
This theorem is referenced by:  isthincd2  49423  oppcthin  49424  subthinc  49429  thincciso2  49441  indcthing  49446  discthing  49447  setcthin  49451  idfudiag1  49511  arweuthinc  49515  funcsn  49527  0fucterm  49529
  Copyright terms: Public domain W3C validator