Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthincd Structured version   Visualization version   GIF version

Theorem isthincd 49561
Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd.b (𝜑𝐵 = (Base‘𝐶))
isthincd.h (𝜑𝐻 = (Hom ‘𝐶))
isthincd.t ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
isthincd.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
isthincd (𝜑𝐶 ∈ ThinCat)
Distinct variable groups:   𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝐻(𝑥,𝑦,𝑓)

Proof of Theorem isthincd
StepHypRef Expression
1 isthincd.c . 2 (𝜑𝐶 ∈ Cat)
2 isthincd.t . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
32ralrimivva 3176 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
4 isthincd.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
5 isthincd.h . . . . . . . 8 (𝜑𝐻 = (Hom ‘𝐶))
65oveqd 7369 . . . . . . 7 (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
76eleq2d 2819 . . . . . 6 (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
87mobidv 2546 . . . . 5 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
94, 8raleqbidv 3313 . . . 4 (𝜑 → (∀𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
104, 9raleqbidv 3313 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
113, 10mpbid 232 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
12 eqid 2733 . . 3 (Base‘𝐶) = (Base‘𝐶)
13 eqid 2733 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
1412, 13isthinc 49544 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
151, 11, 14sylanbrc 583 1 (𝜑𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ∃*wmo 2535  wral 3048  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  Catccat 17572  ThinCatcthinc 49542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-thinc 49543
This theorem is referenced by:  isthincd2  49562  oppcthin  49563  subthinc  49568  thincciso2  49580  indcthing  49585  discthing  49586  setcthin  49590  idfudiag1  49650  arweuthinc  49654  funcsn  49666  0fucterm  49668
  Copyright terms: Public domain W3C validator