MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inimasn Structured version   Visualization version   GIF version

Theorem inimasn 6165
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimasn (𝐶𝑉 → ((𝐴𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))

Proof of Theorem inimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3965 . . 3 (𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})) ↔ (𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})))
2 elin 3965 . . . . 5 (⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵))
32a1i 11 . . . 4 (𝐶𝑉 → (⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵)))
4 elimasng 6097 . . . . 5 ((𝐶𝑉𝑥 ∈ V) → (𝑥 ∈ ((𝐴𝐵) “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵)))
54elvd 3480 . . . 4 (𝐶𝑉 → (𝑥 ∈ ((𝐴𝐵) “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵)))
6 elimasng 6097 . . . . . 6 ((𝐶𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐴))
76elvd 3480 . . . . 5 (𝐶𝑉 → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐴))
8 elimasng 6097 . . . . . 6 ((𝐶𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐵))
98elvd 3480 . . . . 5 (𝐶𝑉 → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐵))
107, 9anbi12d 630 . . . 4 (𝐶𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵)))
113, 5, 103bitr4rd 311 . . 3 (𝐶𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ 𝑥 ∈ ((𝐴𝐵) “ {𝐶})))
121, 11bitr2id 283 . 2 (𝐶𝑉 → (𝑥 ∈ ((𝐴𝐵) “ {𝐶}) ↔ 𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))))
1312eqrdv 2726 1 (𝐶𝑉 → ((𝐴𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cin 3948  {csn 4632  cop 4638  cima 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695
This theorem is referenced by:  restutopopn  24163  ustuqtop2  24167
  Copyright terms: Public domain W3C validator