![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inimasn | Structured version Visualization version GIF version |
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
inimasn | ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3978 | . . 3 ⊢ (𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})) ↔ (𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶}))) | |
2 | elin 3978 | . . . . 5 ⊢ (〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵)) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵))) |
4 | elimasng 6108 | . . . . 5 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵))) | |
5 | 4 | elvd 3483 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵))) |
6 | elimasng 6108 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐴)) | |
7 | 6 | elvd 3483 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐴)) |
8 | elimasng 6108 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐵)) | |
9 | 8 | elvd 3483 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐵)) |
10 | 7, 9 | anbi12d 632 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵))) |
11 | 3, 5, 10 | 3bitr4rd 312 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}))) |
12 | 1, 11 | bitr2id 284 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))) |
13 | 12 | eqrdv 2732 | 1 ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∩ cin 3961 {csn 4630 〈cop 4636 “ cima 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 |
This theorem is referenced by: restutopopn 24262 ustuqtop2 24266 |
Copyright terms: Public domain | W3C validator |