MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inimasn Structured version   Visualization version   GIF version

Theorem inimasn 6177
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimasn (𝐶𝑉 → ((𝐴𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))

Proof of Theorem inimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3978 . . 3 (𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})) ↔ (𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})))
2 elin 3978 . . . . 5 (⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵))
32a1i 11 . . . 4 (𝐶𝑉 → (⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵)))
4 elimasng 6108 . . . . 5 ((𝐶𝑉𝑥 ∈ V) → (𝑥 ∈ ((𝐴𝐵) “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵)))
54elvd 3483 . . . 4 (𝐶𝑉 → (𝑥 ∈ ((𝐴𝐵) “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ (𝐴𝐵)))
6 elimasng 6108 . . . . . 6 ((𝐶𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐴))
76elvd 3483 . . . . 5 (𝐶𝑉 → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐴))
8 elimasng 6108 . . . . . 6 ((𝐶𝑉𝑥 ∈ V) → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐵))
98elvd 3483 . . . . 5 (𝐶𝑉 → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐵))
107, 9anbi12d 632 . . . 4 (𝐶𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵)))
113, 5, 103bitr4rd 312 . . 3 (𝐶𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ 𝑥 ∈ ((𝐴𝐵) “ {𝐶})))
121, 11bitr2id 284 . 2 (𝐶𝑉 → (𝑥 ∈ ((𝐴𝐵) “ {𝐶}) ↔ 𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))))
1312eqrdv 2732 1 (𝐶𝑉 → ((𝐴𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  cin 3961  {csn 4630  cop 4636  cima 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701
This theorem is referenced by:  restutopopn  24262  ustuqtop2  24266
  Copyright terms: Public domain W3C validator