![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inimasn | Structured version Visualization version GIF version |
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
inimasn | ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . 3 ⊢ (𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})) ↔ (𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶}))) | |
2 | elin 3963 | . . . . 5 ⊢ (⟨𝐶, 𝑥⟩ ∈ (𝐴 ∩ 𝐵) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵)) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐶, 𝑥⟩ ∈ (𝐴 ∩ 𝐵) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵))) |
4 | elimasng 6084 | . . . . 5 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ (𝐴 ∩ 𝐵))) | |
5 | 4 | elvd 3481 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ (𝐴 ∩ 𝐵))) |
6 | elimasng 6084 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐴)) | |
7 | 6 | elvd 3481 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐴)) |
8 | elimasng 6084 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐵)) | |
9 | 8 | elvd 3481 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐵)) |
10 | 7, 9 | anbi12d 631 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ (⟨𝐶, 𝑥⟩ ∈ 𝐴 ∧ ⟨𝐶, 𝑥⟩ ∈ 𝐵))) |
11 | 3, 5, 10 | 3bitr4rd 311 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}))) |
12 | 1, 11 | bitr2id 283 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))) |
13 | 12 | eqrdv 2730 | 1 ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 {csn 4627 ⟨cop 4633 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: restutopopn 23734 ustuqtop2 23738 |
Copyright terms: Public domain | W3C validator |