MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imainss Structured version   Visualization version   GIF version

Theorem imainss 6115
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))

Proof of Theorem imainss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . . . . . . . . . 11 𝑦 ∈ V
2 vex 3448 . . . . . . . . . . 11 𝑥 ∈ V
31, 2brcnv 5836 . . . . . . . . . 10 (𝑦𝑅𝑥𝑥𝑅𝑦)
4 19.8a 2182 . . . . . . . . . 10 ((𝑦𝐵𝑦𝑅𝑥) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
53, 4sylan2br 595 . . . . . . . . 9 ((𝑦𝐵𝑥𝑅𝑦) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
65ancoms 458 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝐵) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
76anim2i 617 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
8 simprl 770 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → 𝑥𝑅𝑦)
97, 8jca 511 . . . . . 6 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
109anassrs 467 . . . . 5 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
11 elin 3927 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴𝑥 ∈ (𝑅𝐵)))
122elima2 6026 . . . . . . . 8 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
1312anbi2i 623 . . . . . . 7 ((𝑥𝐴𝑥 ∈ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1411, 13bitri 275 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1514anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦) ↔ ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
1610, 15sylibr 234 . . . 4 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
1716eximi 1835 . . 3 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
181elima2 6026 . . . . 5 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
1918anbi1i 624 . . . 4 ((𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
20 elin 3927 . . . 4 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵))
21 19.41v 1949 . . . 4 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
2219, 20, 213bitr4i 303 . . 3 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ ∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
231elima2 6026 . . 3 (𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))) ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
2417, 22, 233imtr4i 292 . 2 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) → 𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))))
2524ssriv 3947 1 ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  cin 3910  wss 3911   class class class wbr 5102  ccnv 5630  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator