Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnbnd Structured version   Visualization version   GIF version

Theorem opnbnd 36313
Description: A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
opnbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))

Proof of Theorem opnbnd
StepHypRef Expression
1 disjdif 4435 . . . . 5 (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅
21a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
3 ineq1 4176 . . . . 5 (((int‘𝐽)‘𝐴) = 𝐴 → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
43eqeq1d 2731 . . . 4 (((int‘𝐽)‘𝐴) = 𝐴 → ((((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
52, 4syl5ibcom 245 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
6 opnbnd.1 . . . . . . 7 𝑋 = 𝐽
76ntrss2 22944 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
87adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
9 inssdif0 4337 . . . . . 6 ((𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴) ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
106sscls 22943 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
11 dfss2 3932 . . . . . . . . . 10 (𝐴 ⊆ ((cls‘𝐽)‘𝐴) ↔ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1210, 11sylib 218 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1312eqcomd 2735 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
14 eqimss 4005 . . . . . . . 8 (𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
1513, 14syl 17 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
16 sstr 3955 . . . . . . 7 ((𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
1715, 16sylan 580 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
189, 17sylan2br 595 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
198, 18eqssd 3964 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) = 𝐴)
2019ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ → ((int‘𝐽)‘𝐴) = 𝐴))
215, 20impbid 212 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
226isopn3 22953 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ ((int‘𝐽)‘𝐴) = 𝐴))
236topbnd 36312 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
2423ineq2d 4183 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
2524eqeq1d 2731 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
2621, 22, 253bitr4d 311 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3911  cin 3913  wss 3914  c0 4296   cuni 4871  cfv 6511  Topctop 22780  intcnt 22904  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-ntr 22907  df-cls 22908
This theorem is referenced by:  cldbnd  36314
  Copyright terms: Public domain W3C validator