Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnbnd Structured version   Visualization version   GIF version

Theorem opnbnd 36343
Description: A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
opnbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))

Proof of Theorem opnbnd
StepHypRef Expression
1 disjdif 4447 . . . . 5 (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅
21a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
3 ineq1 4188 . . . . 5 (((int‘𝐽)‘𝐴) = 𝐴 → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
43eqeq1d 2737 . . . 4 (((int‘𝐽)‘𝐴) = 𝐴 → ((((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
52, 4syl5ibcom 245 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
6 opnbnd.1 . . . . . . 7 𝑋 = 𝐽
76ntrss2 22995 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
87adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
9 inssdif0 4349 . . . . . 6 ((𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴) ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
106sscls 22994 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
11 dfss2 3944 . . . . . . . . . 10 (𝐴 ⊆ ((cls‘𝐽)‘𝐴) ↔ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1210, 11sylib 218 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1312eqcomd 2741 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
14 eqimss 4017 . . . . . . . 8 (𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
1513, 14syl 17 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
16 sstr 3967 . . . . . . 7 ((𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
1715, 16sylan 580 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
189, 17sylan2br 595 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
198, 18eqssd 3976 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) = 𝐴)
2019ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ → ((int‘𝐽)‘𝐴) = 𝐴))
215, 20impbid 212 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
226isopn3 23004 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ ((int‘𝐽)‘𝐴) = 𝐴))
236topbnd 36342 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
2423ineq2d 4195 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
2524eqeq1d 2737 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
2621, 22, 253bitr4d 311 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3923  cin 3925  wss 3926  c0 4308   cuni 4883  cfv 6531  Topctop 22831  intcnt 22955  clsccl 22956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-top 22832  df-cld 22957  df-ntr 22958  df-cls 22959
This theorem is referenced by:  cldbnd  36344
  Copyright terms: Public domain W3C validator