Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnbnd Structured version   Visualization version   GIF version

Theorem opnbnd 33786
 Description: A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
opnbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))

Proof of Theorem opnbnd
StepHypRef Expression
1 disjdif 4379 . . . . 5 (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅
21a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
3 ineq1 4131 . . . . 5 (((int‘𝐽)‘𝐴) = 𝐴 → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
43eqeq1d 2800 . . . 4 (((int‘𝐽)‘𝐴) = 𝐴 → ((((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
52, 4syl5ibcom 248 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
6 opnbnd.1 . . . . . . 7 𝑋 = 𝐽
76ntrss2 21662 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
87adantr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
9 inssdif0 4283 . . . . . 6 ((𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴) ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
106sscls 21661 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
11 df-ss 3898 . . . . . . . . . 10 (𝐴 ⊆ ((cls‘𝐽)‘𝐴) ↔ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1210, 11sylib 221 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1312eqcomd 2804 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
14 eqimss 3971 . . . . . . . 8 (𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
1513, 14syl 17 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
16 sstr 3923 . . . . . . 7 ((𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
1715, 16sylan 583 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
189, 17sylan2br 597 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
198, 18eqssd 3932 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) = 𝐴)
2019ex 416 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ → ((int‘𝐽)‘𝐴) = 𝐴))
215, 20impbid 215 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
226isopn3 21671 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ ((int‘𝐽)‘𝐴) = 𝐴))
236topbnd 33785 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
2423ineq2d 4139 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
2524eqeq1d 2800 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
2621, 22, 253bitr4d 314 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∖ cdif 3878   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  ∪ cuni 4800  ‘cfv 6324  Topctop 21498  intcnt 21622  clsccl 21623 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-top 21499  df-cld 21624  df-ntr 21625  df-cls 21626 This theorem is referenced by:  cldbnd  33787
 Copyright terms: Public domain W3C validator