Proof of Theorem opnbnd
Step | Hyp | Ref
| Expression |
1 | | disjdif 4405 |
. . . . 5
⊢
(((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) |
3 | | ineq1 4139 |
. . . . 5
⊢
(((int‘𝐽)‘𝐴) = 𝐴 → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))) |
4 | 3 | eqeq1d 2740 |
. . . 4
⊢
(((int‘𝐽)‘𝐴) = 𝐴 → ((((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)) |
5 | 2, 4 | syl5ibcom 244 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)) |
6 | | opnbnd.1 |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
7 | 6 | ntrss2 22208 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
8 | 7 | adantr 481 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
9 | | inssdif0 4303 |
. . . . . 6
⊢ ((𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴) ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) |
10 | 6 | sscls 22207 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
11 | | df-ss 3904 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ((cls‘𝐽)‘𝐴) ↔ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴) |
12 | 10, 11 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴) |
13 | 12 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴))) |
14 | | eqimss 3977 |
. . . . . . . 8
⊢ (𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴))) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴))) |
16 | | sstr 3929 |
. . . . . . 7
⊢ ((𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴)) |
17 | 15, 16 | sylan 580 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴)) |
18 | 9, 17 | sylan2br 595 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → 𝐴 ⊆ ((int‘𝐽)‘𝐴)) |
19 | 8, 18 | eqssd 3938 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) = 𝐴) |
20 | 19 | ex 413 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ → ((int‘𝐽)‘𝐴) = 𝐴)) |
21 | 5, 20 | impbid 211 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)) |
22 | 6 | isopn3 22217 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ ((int‘𝐽)‘𝐴) = 𝐴)) |
23 | 6 | topbnd 34513 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) |
24 | 23 | ineq2d 4146 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))) |
25 | 24 | eqeq1d 2740 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)) |
26 | 21, 22, 25 | 3bitr4d 311 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅)) |