Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnbnd Structured version   Visualization version   GIF version

Theorem opnbnd 33284
Description: A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
opnbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))

Proof of Theorem opnbnd
StepHypRef Expression
1 disjdif 4341 . . . . 5 (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅
21a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
3 ineq1 4107 . . . . 5 (((int‘𝐽)‘𝐴) = 𝐴 → (((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
43eqeq1d 2799 . . . 4 (((int‘𝐽)‘𝐴) = 𝐴 → ((((int‘𝐽)‘𝐴) ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
52, 4syl5ibcom 246 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
6 opnbnd.1 . . . . . . 7 𝑋 = 𝐽
76ntrss2 21353 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
87adantr 481 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
9 inssdif0 4255 . . . . . 6 ((𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴) ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅)
106sscls 21352 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
11 df-ss 3880 . . . . . . . . . 10 (𝐴 ⊆ ((cls‘𝐽)‘𝐴) ↔ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1210, 11sylib 219 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ ((cls‘𝐽)‘𝐴)) = 𝐴)
1312eqcomd 2803 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
14 eqimss 3950 . . . . . . . 8 (𝐴 = (𝐴 ∩ ((cls‘𝐽)‘𝐴)) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
1513, 14syl 17 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)))
16 sstr 3903 . . . . . . 7 ((𝐴 ⊆ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
1715, 16sylan 580 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((int‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
189, 17sylan2br 594 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → 𝐴 ⊆ ((int‘𝐽)‘𝐴))
198, 18eqssd 3912 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅) → ((int‘𝐽)‘𝐴) = 𝐴)
2019ex 413 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅ → ((int‘𝐽)‘𝐴) = 𝐴))
215, 20impbid 213 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘𝐴) = 𝐴 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
226isopn3 21362 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ ((int‘𝐽)‘𝐴) = 𝐴))
236topbnd 33283 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
2423ineq2d 4115 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))))
2524eqeq1d 2799 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) = ∅))
2621, 22, 253bitr4d 312 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  cdif 3862  cin 3864  wss 3865  c0 4217   cuni 4751  cfv 6232  Topctop 21189  intcnt 21313  clsccl 21314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-top 21190  df-cld 21315  df-ntr 21316  df-cls 21317
This theorem is referenced by:  cldbnd  33285
  Copyright terms: Public domain W3C validator