Proof of Theorem diophrw
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
→ 𝑏 ∈
(ℕ0 ↑m 𝑆)) | 
| 2 |  | nn0ex 12534 | . . . . . . . . . 10
⊢
ℕ0 ∈ V | 
| 3 |  | simp1 1136 | . . . . . . . . . . 11
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → 𝑆 ∈ V) | 
| 4 | 3 | adantr 480 | . . . . . . . . . 10
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
→ 𝑆 ∈
V) | 
| 5 |  | elmapg 8880 | . . . . . . . . . 10
⊢
((ℕ0 ∈ V ∧ 𝑆 ∈ V) → (𝑏 ∈ (ℕ0
↑m 𝑆)
↔ 𝑏:𝑆⟶ℕ0)) | 
| 6 | 2, 4, 5 | sylancr 587 | . . . . . . . . 9
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
→ (𝑏 ∈
(ℕ0 ↑m 𝑆) ↔ 𝑏:𝑆⟶ℕ0)) | 
| 7 | 1, 6 | mpbid 232 | . . . . . . . 8
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
→ 𝑏:𝑆⟶ℕ0) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑏:𝑆⟶ℕ0) | 
| 9 |  | simp2 1137 | . . . . . . . . 9
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → 𝑀:𝑇–1-1→𝑆) | 
| 10 |  | f1f 6803 | . . . . . . . . 9
⊢ (𝑀:𝑇–1-1→𝑆 → 𝑀:𝑇⟶𝑆) | 
| 11 | 9, 10 | syl 17 | . . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → 𝑀:𝑇⟶𝑆) | 
| 12 | 11 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑀:𝑇⟶𝑆) | 
| 13 |  | fco 6759 | . . . . . . 7
⊢ ((𝑏:𝑆⟶ℕ0 ∧ 𝑀:𝑇⟶𝑆) → (𝑏 ∘ 𝑀):𝑇⟶ℕ0) | 
| 14 | 8, 12, 13 | syl2anc 584 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → (𝑏 ∘ 𝑀):𝑇⟶ℕ0) | 
| 15 |  | f1dmex 7982 | . . . . . . . . 9
⊢ ((𝑀:𝑇–1-1→𝑆 ∧ 𝑆 ∈ V) → 𝑇 ∈ V) | 
| 16 | 9, 3, 15 | syl2anc 584 | . . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → 𝑇 ∈ V) | 
| 17 | 16 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑇 ∈ V) | 
| 18 |  | elmapg 8880 | . . . . . . 7
⊢
((ℕ0 ∈ V ∧ 𝑇 ∈ V) → ((𝑏 ∘ 𝑀) ∈ (ℕ0
↑m 𝑇)
↔ (𝑏 ∘ 𝑀):𝑇⟶ℕ0)) | 
| 19 | 2, 17, 18 | sylancr 587 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → ((𝑏 ∘ 𝑀) ∈ (ℕ0
↑m 𝑇)
↔ (𝑏 ∘ 𝑀):𝑇⟶ℕ0)) | 
| 20 | 14, 19 | mpbird 257 | . . . . 5
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → (𝑏 ∘ 𝑀) ∈ (ℕ0
↑m 𝑇)) | 
| 21 |  | simprl 770 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑎 = (𝑏 ↾ 𝑂)) | 
| 22 |  | resco 6269 | . . . . . . 7
⊢ ((𝑏 ∘ 𝑀) ↾ 𝑂) = (𝑏 ∘ (𝑀 ↾ 𝑂)) | 
| 23 |  | simpll3 1214 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) | 
| 24 | 23 | coeq2d 5872 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → (𝑏 ∘ (𝑀 ↾ 𝑂)) = (𝑏 ∘ ( I ↾ 𝑂))) | 
| 25 |  | coires1 6283 | . . . . . . . 8
⊢ (𝑏 ∘ ( I ↾ 𝑂)) = (𝑏 ↾ 𝑂) | 
| 26 | 24, 25 | eqtrdi 2792 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → (𝑏 ∘ (𝑀 ↾ 𝑂)) = (𝑏 ↾ 𝑂)) | 
| 27 | 22, 26 | eqtrid 2788 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → ((𝑏 ∘ 𝑀) ↾ 𝑂) = (𝑏 ↾ 𝑂)) | 
| 28 | 21, 27 | eqtr4d 2779 | . . . . 5
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑎 = ((𝑏 ∘ 𝑀) ↾ 𝑂)) | 
| 29 |  | simpll1 1212 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑆 ∈ V) | 
| 30 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑆 → (ℕ0
↑m 𝑎) =
(ℕ0 ↑m 𝑆)) | 
| 31 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑆 → (ℤ ↑m 𝑎) = (ℤ ↑m
𝑆)) | 
| 32 | 30, 31 | sseq12d 4016 | . . . . . . . . . 10
⊢ (𝑎 = 𝑆 → ((ℕ0
↑m 𝑎)
⊆ (ℤ ↑m 𝑎) ↔ (ℕ0
↑m 𝑆)
⊆ (ℤ ↑m 𝑆))) | 
| 33 |  | zex 12624 | . . . . . . . . . . 11
⊢ ℤ
∈ V | 
| 34 |  | nn0ssz 12638 | . . . . . . . . . . 11
⊢
ℕ0 ⊆ ℤ | 
| 35 |  | mapss 8930 | . . . . . . . . . . 11
⊢ ((ℤ
∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0
↑m 𝑎)
⊆ (ℤ ↑m 𝑎)) | 
| 36 | 33, 34, 35 | mp2an 692 | . . . . . . . . . 10
⊢
(ℕ0 ↑m 𝑎) ⊆ (ℤ ↑m 𝑎) | 
| 37 | 32, 36 | vtoclg 3553 | . . . . . . . . 9
⊢ (𝑆 ∈ V →
(ℕ0 ↑m 𝑆) ⊆ (ℤ ↑m 𝑆)) | 
| 38 | 29, 37 | syl 17 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → (ℕ0
↑m 𝑆)
⊆ (ℤ ↑m 𝑆)) | 
| 39 |  | simplr 768 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑏 ∈ (ℕ0
↑m 𝑆)) | 
| 40 | 38, 39 | sseldd 3983 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → 𝑏 ∈ (ℤ ↑m 𝑆)) | 
| 41 |  | coeq1 5867 | . . . . . . . . 9
⊢ (𝑑 = 𝑏 → (𝑑 ∘ 𝑀) = (𝑏 ∘ 𝑀)) | 
| 42 | 41 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑑 = 𝑏 → (𝑃‘(𝑑 ∘ 𝑀)) = (𝑃‘(𝑏 ∘ 𝑀))) | 
| 43 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑑 ∈ (ℤ
↑m 𝑆)
↦ (𝑃‘(𝑑 ∘ 𝑀))) = (𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀))) | 
| 44 |  | fvex 6918 | . . . . . . . 8
⊢ (𝑃‘(𝑏 ∘ 𝑀)) ∈ V | 
| 45 | 42, 43, 44 | fvmpt 7015 | . . . . . . 7
⊢ (𝑏 ∈ (ℤ
↑m 𝑆)
→ ((𝑑 ∈ (ℤ
↑m 𝑆)
↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = (𝑃‘(𝑏 ∘ 𝑀))) | 
| 46 | 40, 45 | syl 17 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = (𝑃‘(𝑏 ∘ 𝑀))) | 
| 47 |  | simprr 772 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0) | 
| 48 | 46, 47 | eqtr3d 2778 | . . . . 5
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → (𝑃‘(𝑏 ∘ 𝑀)) = 0) | 
| 49 |  | reseq1 5990 | . . . . . . . 8
⊢ (𝑐 = (𝑏 ∘ 𝑀) → (𝑐 ↾ 𝑂) = ((𝑏 ∘ 𝑀) ↾ 𝑂)) | 
| 50 | 49 | eqeq2d 2747 | . . . . . . 7
⊢ (𝑐 = (𝑏 ∘ 𝑀) → (𝑎 = (𝑐 ↾ 𝑂) ↔ 𝑎 = ((𝑏 ∘ 𝑀) ↾ 𝑂))) | 
| 51 |  | fveqeq2 6914 | . . . . . . 7
⊢ (𝑐 = (𝑏 ∘ 𝑀) → ((𝑃‘𝑐) = 0 ↔ (𝑃‘(𝑏 ∘ 𝑀)) = 0)) | 
| 52 | 50, 51 | anbi12d 632 | . . . . . 6
⊢ (𝑐 = (𝑏 ∘ 𝑀) → ((𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0) ↔ (𝑎 = ((𝑏 ∘ 𝑀) ↾ 𝑂) ∧ (𝑃‘(𝑏 ∘ 𝑀)) = 0))) | 
| 53 | 52 | rspcev 3621 | . . . . 5
⊢ (((𝑏 ∘ 𝑀) ∈ (ℕ0
↑m 𝑇) ∧
(𝑎 = ((𝑏 ∘ 𝑀) ↾ 𝑂) ∧ (𝑃‘(𝑏 ∘ 𝑀)) = 0)) → ∃𝑐 ∈ (ℕ0
↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) | 
| 54 | 20, 28, 48, 53 | syl12anc 836 | . . . 4
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0
↑m 𝑆))
∧ (𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) → ∃𝑐 ∈ (ℕ0
↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) | 
| 55 | 54 | rexlimdva2 3156 | . . 3
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → (∃𝑏 ∈ (ℕ0
↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0) → ∃𝑐 ∈ (ℕ0
↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0))) | 
| 56 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ 𝑐 ∈
(ℕ0 ↑m 𝑇)) | 
| 57 | 16 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ 𝑇 ∈
V) | 
| 58 |  | elmapg 8880 | . . . . . . . . . . . 12
⊢
((ℕ0 ∈ V ∧ 𝑇 ∈ V) → (𝑐 ∈ (ℕ0
↑m 𝑇)
↔ 𝑐:𝑇⟶ℕ0)) | 
| 59 | 2, 57, 58 | sylancr 587 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑐 ∈
(ℕ0 ↑m 𝑇) ↔ 𝑐:𝑇⟶ℕ0)) | 
| 60 | 56, 59 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ 𝑐:𝑇⟶ℕ0) | 
| 61 | 60 | adantr 480 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → 𝑐:𝑇⟶ℕ0) | 
| 62 | 9 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → 𝑀:𝑇–1-1→𝑆) | 
| 63 |  | f1cnv 6871 | . . . . . . . . . 10
⊢ (𝑀:𝑇–1-1→𝑆 → ◡𝑀:ran 𝑀–1-1-onto→𝑇) | 
| 64 |  | f1of 6847 | . . . . . . . . . 10
⊢ (◡𝑀:ran 𝑀–1-1-onto→𝑇 → ◡𝑀:ran 𝑀⟶𝑇) | 
| 65 | 62, 63, 64 | 3syl 18 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ◡𝑀:ran 𝑀⟶𝑇) | 
| 66 |  | fco 6759 | . . . . . . . . 9
⊢ ((𝑐:𝑇⟶ℕ0 ∧ ◡𝑀:ran 𝑀⟶𝑇) → (𝑐 ∘ ◡𝑀):ran 𝑀⟶ℕ0) | 
| 67 | 61, 65, 66 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (𝑐 ∘ ◡𝑀):ran 𝑀⟶ℕ0) | 
| 68 |  | c0ex 11256 | . . . . . . . . . 10
⊢ 0 ∈
V | 
| 69 | 68 | fconst 6793 | . . . . . . . . 9
⊢ ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0} | 
| 70 | 69 | a1i 11 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0}) | 
| 71 |  | disjdif 4471 | . . . . . . . . 9
⊢ (ran
𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅ | 
| 72 | 71 | a1i 11 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅) | 
| 73 |  | fun 6769 | . . . . . . . 8
⊢ ((((𝑐 ∘ ◡𝑀):ran 𝑀⟶ℕ0 ∧ ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0}) ∧ (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℕ0 ∪
{0})) | 
| 74 | 67, 70, 72, 73 | syl21anc 837 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℕ0 ∪
{0})) | 
| 75 |  | frn 6742 | . . . . . . . . . . 11
⊢ (𝑀:𝑇⟶𝑆 → ran 𝑀 ⊆ 𝑆) | 
| 76 | 9, 10, 75 | 3syl 18 | . . . . . . . . . 10
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → ran 𝑀 ⊆ 𝑆) | 
| 77 | 76 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ran 𝑀 ⊆ 𝑆) | 
| 78 |  | undif 4481 | . . . . . . . . 9
⊢ (ran
𝑀 ⊆ 𝑆 ↔ (ran 𝑀 ∪ (𝑆 ∖ ran 𝑀)) = 𝑆) | 
| 79 | 77, 78 | sylib 218 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (ran 𝑀 ∪ (𝑆 ∖ ran 𝑀)) = 𝑆) | 
| 80 |  | 0nn0 12543 | . . . . . . . . . . 11
⊢ 0 ∈
ℕ0 | 
| 81 |  | snssi 4807 | . . . . . . . . . . 11
⊢ (0 ∈
ℕ0 → {0} ⊆ ℕ0) | 
| 82 | 80, 81 | ax-mp 5 | . . . . . . . . . 10
⊢ {0}
⊆ ℕ0 | 
| 83 |  | ssequn2 4188 | . . . . . . . . . 10
⊢ ({0}
⊆ ℕ0 ↔ (ℕ0 ∪ {0}) =
ℕ0) | 
| 84 | 82, 83 | mpbi 230 | . . . . . . . . 9
⊢
(ℕ0 ∪ {0}) = ℕ0 | 
| 85 | 84 | a1i 11 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (ℕ0 ∪
{0}) = ℕ0) | 
| 86 | 79, 85 | feq23d 6730 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℕ0 ∪ {0})
↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0)) | 
| 87 | 74, 86 | mpbid 232 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0) | 
| 88 |  | elmapg 8880 | . . . . . . . 8
⊢
((ℕ0 ∈ V ∧ 𝑆 ∈ V) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0
↑m 𝑆)
↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0)) | 
| 89 | 2, 3, 88 | sylancr 587 | . . . . . . 7
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0
↑m 𝑆)
↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0)) | 
| 90 | 89 | ad2antrr 726 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0
↑m 𝑆)
↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0)) | 
| 91 | 87, 90 | mpbird 257 | . . . . 5
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0
↑m 𝑆)) | 
| 92 |  | simprl 770 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → 𝑎 = (𝑐 ↾ 𝑂)) | 
| 93 |  | resundir 6011 | . . . . . . . . 9
⊢ (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) = (((𝑐 ∘ ◡𝑀) ↾ 𝑂) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂)) | 
| 94 |  | resco 6269 | . . . . . . . . . . 11
⊢ ((𝑐 ∘ ◡𝑀) ↾ 𝑂) = (𝑐 ∘ (◡𝑀 ↾ 𝑂)) | 
| 95 |  | simpl2 1192 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ 𝑀:𝑇–1-1→𝑆) | 
| 96 |  | df-f1 6565 | . . . . . . . . . . . . . . . . 17
⊢ (𝑀:𝑇–1-1→𝑆 ↔ (𝑀:𝑇⟶𝑆 ∧ Fun ◡𝑀)) | 
| 97 | 96 | simprbi 496 | . . . . . . . . . . . . . . . 16
⊢ (𝑀:𝑇–1-1→𝑆 → Fun ◡𝑀) | 
| 98 |  | funcnvres 6643 | . . . . . . . . . . . . . . . 16
⊢ (Fun
◡𝑀 → ◡(𝑀 ↾ 𝑂) = (◡𝑀 ↾ (𝑀 “ 𝑂))) | 
| 99 | 95, 97, 98 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ ◡(𝑀 ↾ 𝑂) = (◡𝑀 ↾ (𝑀 “ 𝑂))) | 
| 100 |  | simpl3 1193 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) | 
| 101 | 100 | cnveqd 5885 | . . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ ◡(𝑀 ↾ 𝑂) = ◡( I ↾ 𝑂)) | 
| 102 |  | df-ima 5697 | . . . . . . . . . . . . . . . . 17
⊢ (𝑀 “ 𝑂) = ran (𝑀 ↾ 𝑂) | 
| 103 | 100 | rneqd 5948 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ ran (𝑀 ↾ 𝑂) = ran ( I ↾ 𝑂)) | 
| 104 |  | rnresi 6092 | . . . . . . . . . . . . . . . . . 18
⊢ ran ( I
↾ 𝑂) = 𝑂 | 
| 105 | 103, 104 | eqtrdi 2792 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ ran (𝑀 ↾ 𝑂) = 𝑂) | 
| 106 | 102, 105 | eqtrid 2788 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑀 “ 𝑂) = 𝑂) | 
| 107 | 106 | reseq2d 5996 | . . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (◡𝑀 ↾ (𝑀 “ 𝑂)) = (◡𝑀 ↾ 𝑂)) | 
| 108 | 99, 101, 107 | 3eqtr3d 2784 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ ◡( I ↾ 𝑂) = (◡𝑀 ↾ 𝑂)) | 
| 109 |  | cnvresid 6644 | . . . . . . . . . . . . . 14
⊢ ◡( I ↾ 𝑂) = ( I ↾ 𝑂) | 
| 110 | 108, 109 | eqtr3di 2791 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (◡𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) | 
| 111 | 110 | coeq2d 5872 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑐 ∘ (◡𝑀 ↾ 𝑂)) = (𝑐 ∘ ( I ↾ 𝑂))) | 
| 112 |  | coires1 6283 | . . . . . . . . . . . 12
⊢ (𝑐 ∘ ( I ↾ 𝑂)) = (𝑐 ↾ 𝑂) | 
| 113 | 111, 112 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑐 ∘ (◡𝑀 ↾ 𝑂)) = (𝑐 ↾ 𝑂)) | 
| 114 | 94, 113 | eqtrid 2788 | . . . . . . . . . 10
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ ((𝑐 ∘ ◡𝑀) ↾ 𝑂) = (𝑐 ↾ 𝑂)) | 
| 115 |  | dmres 6029 | . . . . . . . . . . . 12
⊢ dom
(((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = (𝑂 ∩ dom ((𝑆 ∖ ran 𝑀) × {0})) | 
| 116 | 68 | snnz 4775 | . . . . . . . . . . . . . . 15
⊢ {0} ≠
∅ | 
| 117 |  | dmxp 5938 | . . . . . . . . . . . . . . 15
⊢ ({0} ≠
∅ → dom ((𝑆
∖ ran 𝑀) × {0})
= (𝑆 ∖ ran 𝑀)) | 
| 118 | 116, 117 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ dom
((𝑆 ∖ ran 𝑀) × {0}) = (𝑆 ∖ ran 𝑀) | 
| 119 | 118 | ineq2i 4216 | . . . . . . . . . . . . 13
⊢ (𝑂 ∩ dom ((𝑆 ∖ ran 𝑀) × {0})) = (𝑂 ∩ (𝑆 ∖ ran 𝑀)) | 
| 120 |  | inss1 4236 | . . . . . . . . . . . . . . 15
⊢ (𝑂 ∩ 𝑆) ⊆ 𝑂 | 
| 121 | 103, 104 | eqtr2di 2793 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ 𝑂 = ran (𝑀 ↾ 𝑂)) | 
| 122 |  | resss 6018 | . . . . . . . . . . . . . . . . 17
⊢ (𝑀 ↾ 𝑂) ⊆ 𝑀 | 
| 123 |  | rnss 5949 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ↾ 𝑂) ⊆ 𝑀 → ran (𝑀 ↾ 𝑂) ⊆ ran 𝑀) | 
| 124 | 122, 123 | mp1i 13 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ ran (𝑀 ↾ 𝑂) ⊆ ran 𝑀) | 
| 125 | 121, 124 | eqsstrd 4017 | . . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ 𝑂 ⊆ ran 𝑀) | 
| 126 | 120, 125 | sstrid 3994 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑂 ∩ 𝑆) ⊆ ran 𝑀) | 
| 127 |  | inssdif0 4373 | . . . . . . . . . . . . . 14
⊢ ((𝑂 ∩ 𝑆) ⊆ ran 𝑀 ↔ (𝑂 ∩ (𝑆 ∖ ran 𝑀)) = ∅) | 
| 128 | 126, 127 | sylib 218 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑂 ∩ (𝑆 ∖ ran 𝑀)) = ∅) | 
| 129 | 119, 128 | eqtrid 2788 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑂 ∩ dom ((𝑆 ∖ ran 𝑀) × {0})) = ∅) | 
| 130 | 115, 129 | eqtrid 2788 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ dom (((𝑆 ∖ ran
𝑀) × {0}) ↾
𝑂) =
∅) | 
| 131 |  | relres 6022 | . . . . . . . . . . . 12
⊢ Rel
(((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) | 
| 132 |  | reldm0 5937 | . . . . . . . . . . . 12
⊢ (Rel
(((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) → ((((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅ ↔ dom (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅)) | 
| 133 | 131, 132 | ax-mp 5 | . . . . . . . . . . 11
⊢ ((((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅ ↔ dom (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅) | 
| 134 | 130, 133 | sylibr 234 | . . . . . . . . . 10
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (((𝑆 ∖ ran
𝑀) × {0}) ↾
𝑂) =
∅) | 
| 135 | 114, 134 | uneq12d 4168 | . . . . . . . . 9
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (((𝑐 ∘ ◡𝑀) ↾ 𝑂) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂)) = ((𝑐 ↾ 𝑂) ∪ ∅)) | 
| 136 | 93, 135 | eqtrid 2788 | . . . . . . . 8
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) = ((𝑐 ↾ 𝑂) ∪ ∅)) | 
| 137 |  | un0 4393 | . . . . . . . 8
⊢ ((𝑐 ↾ 𝑂) ∪ ∅) = (𝑐 ↾ 𝑂) | 
| 138 | 136, 137 | eqtr2di 2793 | . . . . . . 7
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ (𝑐 ↾ 𝑂) = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂)) | 
| 139 | 138 | adantr 480 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (𝑐 ↾ 𝑂) = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂)) | 
| 140 | 92, 139 | eqtrd 2776 | . . . . 5
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → 𝑎 = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂)) | 
| 141 |  | fss 6751 | . . . . . . . . . . . . 13
⊢ ((𝑐:𝑇⟶ℕ0 ∧
ℕ0 ⊆ ℤ) → 𝑐:𝑇⟶ℤ) | 
| 142 | 60, 34, 141 | sylancl 586 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
→ 𝑐:𝑇⟶ℤ) | 
| 143 | 142 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → 𝑐:𝑇⟶ℤ) | 
| 144 |  | fco 6759 | . . . . . . . . . . 11
⊢ ((𝑐:𝑇⟶ℤ ∧ ◡𝑀:ran 𝑀⟶𝑇) → (𝑐 ∘ ◡𝑀):ran 𝑀⟶ℤ) | 
| 145 | 143, 65, 144 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (𝑐 ∘ ◡𝑀):ran 𝑀⟶ℤ) | 
| 146 |  | fun 6769 | . . . . . . . . . 10
⊢ ((((𝑐 ∘ ◡𝑀):ran 𝑀⟶ℤ ∧ ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0}) ∧ (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℤ ∪
{0})) | 
| 147 | 145, 70, 72, 146 | syl21anc 837 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℤ ∪
{0})) | 
| 148 |  | 0z 12626 | . . . . . . . . . . . . 13
⊢ 0 ∈
ℤ | 
| 149 |  | snssi 4807 | . . . . . . . . . . . . 13
⊢ (0 ∈
ℤ → {0} ⊆ ℤ) | 
| 150 | 148, 149 | ax-mp 5 | . . . . . . . . . . . 12
⊢ {0}
⊆ ℤ | 
| 151 |  | ssequn2 4188 | . . . . . . . . . . . 12
⊢ ({0}
⊆ ℤ ↔ (ℤ ∪ {0}) = ℤ) | 
| 152 | 150, 151 | mpbi 230 | . . . . . . . . . . 11
⊢ (ℤ
∪ {0}) = ℤ | 
| 153 | 152 | a1i 11 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (ℤ ∪ {0}) =
ℤ) | 
| 154 | 79, 153 | feq23d 6730 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℤ ∪ {0}) ↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ)) | 
| 155 | 147, 154 | mpbid 232 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ) | 
| 156 |  | elmapg 8880 | . . . . . . . . . 10
⊢ ((ℤ
∈ V ∧ 𝑆 ∈ V)
→ (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ
↑m 𝑆)
↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ)) | 
| 157 | 33, 3, 156 | sylancr 587 | . . . . . . . . 9
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ
↑m 𝑆)
↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ)) | 
| 158 | 157 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ
↑m 𝑆)
↔ ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ)) | 
| 159 | 155, 158 | mpbird 257 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ
↑m 𝑆)) | 
| 160 |  | coeq1 5867 | . . . . . . . . 9
⊢ (𝑑 = ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑑 ∘ 𝑀) = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)) | 
| 161 | 160 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑑 = ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑃‘(𝑑 ∘ 𝑀)) = (𝑃‘(((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀))) | 
| 162 |  | fvex 6918 | . . . . . . . 8
⊢ (𝑃‘(((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)) ∈ V | 
| 163 | 161, 43, 162 | fvmpt 7015 | . . . . . . 7
⊢ (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ
↑m 𝑆)
→ ((𝑑 ∈ (ℤ
↑m 𝑆)
↦ (𝑃‘(𝑑 ∘ 𝑀)))‘((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = (𝑃‘(((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀))) | 
| 164 | 159, 163 | syl 17 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = (𝑃‘(((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀))) | 
| 165 |  | coundir 6267 | . . . . . . . 8
⊢ (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀) = (((𝑐 ∘ ◡𝑀) ∘ 𝑀) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀)) | 
| 166 |  | coass 6284 | . . . . . . . . . . 11
⊢ ((𝑐 ∘ ◡𝑀) ∘ 𝑀) = (𝑐 ∘ (◡𝑀 ∘ 𝑀)) | 
| 167 |  | f1cocnv1 6877 | . . . . . . . . . . . . 13
⊢ (𝑀:𝑇–1-1→𝑆 → (◡𝑀 ∘ 𝑀) = ( I ↾ 𝑇)) | 
| 168 | 167 | coeq2d 5872 | . . . . . . . . . . . 12
⊢ (𝑀:𝑇–1-1→𝑆 → (𝑐 ∘ (◡𝑀 ∘ 𝑀)) = (𝑐 ∘ ( I ↾ 𝑇))) | 
| 169 | 62, 168 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (𝑐 ∘ (◡𝑀 ∘ 𝑀)) = (𝑐 ∘ ( I ↾ 𝑇))) | 
| 170 | 166, 169 | eqtrid 2788 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ◡𝑀) ∘ 𝑀) = (𝑐 ∘ ( I ↾ 𝑇))) | 
| 171 | 118 | ineq1i 4215 | . . . . . . . . . . . . 13
⊢ (dom
((𝑆 ∖ ran 𝑀) × {0}) ∩ ran 𝑀) = ((𝑆 ∖ ran 𝑀) ∩ ran 𝑀) | 
| 172 |  | incom 4208 | . . . . . . . . . . . . 13
⊢ ((𝑆 ∖ ran 𝑀) ∩ ran 𝑀) = (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) | 
| 173 | 171, 172,
71 | 3eqtri 2768 | . . . . . . . . . . . 12
⊢ (dom
((𝑆 ∖ ran 𝑀) × {0}) ∩ ran 𝑀) = ∅ | 
| 174 |  | coeq0 6274 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀) = ∅ ↔ (dom ((𝑆 ∖ ran 𝑀) × {0}) ∩ ran 𝑀) = ∅) | 
| 175 | 173, 174 | mpbir 231 | . . . . . . . . . . 11
⊢ (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀) = ∅ | 
| 176 | 175 | a1i 11 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀) = ∅) | 
| 177 | 170, 176 | uneq12d 4168 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑐 ∘ ◡𝑀) ∘ 𝑀) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀)) = ((𝑐 ∘ ( I ↾ 𝑇)) ∪ ∅)) | 
| 178 |  | un0 4393 | . . . . . . . . . 10
⊢ ((𝑐 ∘ ( I ↾ 𝑇)) ∪ ∅) = (𝑐 ∘ ( I ↾ 𝑇)) | 
| 179 |  | fcoi1 6781 | . . . . . . . . . . 11
⊢ (𝑐:𝑇⟶ℕ0 → (𝑐 ∘ ( I ↾ 𝑇)) = 𝑐) | 
| 180 | 61, 179 | syl 17 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (𝑐 ∘ ( I ↾ 𝑇)) = 𝑐) | 
| 181 | 178, 180 | eqtrid 2788 | . . . . . . . . 9
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑐 ∘ ( I ↾ 𝑇)) ∪ ∅) = 𝑐) | 
| 182 | 177, 181 | eqtrd 2776 | . . . . . . . 8
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑐 ∘ ◡𝑀) ∘ 𝑀) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀)) = 𝑐) | 
| 183 | 165, 182 | eqtrid 2788 | . . . . . . 7
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀) = 𝑐) | 
| 184 | 183 | fveq2d 6909 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (𝑃‘(((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)) = (𝑃‘𝑐)) | 
| 185 |  | simprr 772 | . . . . . 6
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → (𝑃‘𝑐) = 0) | 
| 186 | 164, 184,
185 | 3eqtrd 2780 | . . . . 5
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0) | 
| 187 |  | reseq1 5990 | . . . . . . . 8
⊢ (𝑏 = ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑏 ↾ 𝑂) = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂)) | 
| 188 | 187 | eqeq2d 2747 | . . . . . . 7
⊢ (𝑏 = ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑎 = (𝑏 ↾ 𝑂) ↔ 𝑎 = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂))) | 
| 189 |  | fveqeq2 6914 | . . . . . . 7
⊢ (𝑏 = ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0 ↔ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0)) | 
| 190 | 188, 189 | anbi12d 632 | . . . . . 6
⊢ (𝑏 = ((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → ((𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0) ↔ (𝑎 = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0))) | 
| 191 | 190 | rspcev 3621 | . . . . 5
⊢ ((((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0
↑m 𝑆) ∧
(𝑎 = (((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘((𝑐 ∘ ◡𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0)) → ∃𝑏 ∈ (ℕ0
↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) | 
| 192 | 91, 140, 186, 191 | syl12anc 836 | . . . 4
⊢ ((((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0
↑m 𝑇))
∧ (𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)) → ∃𝑏 ∈ (ℕ0
↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)) | 
| 193 | 192 | rexlimdva2 3156 | . . 3
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → (∃𝑐 ∈ (ℕ0
↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0) → ∃𝑏 ∈ (ℕ0
↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0))) | 
| 194 | 55, 193 | impbid 212 | . 2
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → (∃𝑏 ∈ (ℕ0
↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0) ↔ ∃𝑐 ∈ (ℕ0
↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0))) | 
| 195 | 194 | abbidv 2807 | 1
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0
↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0
↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)}) |