MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspval Structured version   Visualization version   GIF version

Theorem lspval 19750
Description: The span of a set of vectors (in a left module). (spanval 29122 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspval ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Distinct variable groups:   𝑡,𝑆   𝑡,𝑈   𝑡,𝑉
Allowed substitution hints:   𝑁(𝑡)   𝑊(𝑡)

Proof of Theorem lspval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5 𝑉 = (Base‘𝑊)
2 lspval.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . . . 5 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 19748 . . . 4 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
54fveq1d 6664 . . 3 (𝑊 ∈ LMod → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
65adantr 484 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
7 eqid 2824 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})
8 sseq1 3979 . . . . 5 (𝑠 = 𝑈 → (𝑠𝑡𝑈𝑡))
98rabbidv 3466 . . . 4 (𝑠 = 𝑈 → {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
109inteqd 4868 . . 3 (𝑠 = 𝑈 {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
11 simpr 488 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈𝑉)
121fvexi 6676 . . . . 5 𝑉 ∈ V
1312elpw2 5235 . . . 4 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
1411, 13sylibr 237 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ∈ 𝒫 𝑉)
151, 2lss1 19713 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
16 sseq2 3980 . . . . . 6 (𝑡 = 𝑉 → (𝑈𝑡𝑈𝑉))
1716rspcev 3610 . . . . 5 ((𝑉𝑆𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
1815, 17sylan 583 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
19 intexrab 5230 . . . 4 (∃𝑡𝑆 𝑈𝑡 {𝑡𝑆𝑈𝑡} ∈ V)
2018, 19sylib 221 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → {𝑡𝑆𝑈𝑡} ∈ V)
217, 10, 14, 20fvmptd3 6783 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈) = {𝑡𝑆𝑈𝑡})
226, 21eqtrd 2859 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wrex 3134  {crab 3137  Vcvv 3481  wss 3920  𝒫 cpw 4523   cint 4863  cmpt 5133  cfv 6344  Basecbs 16486  LModclmod 19637  LSubSpclss 19706  LSpanclspn 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-lmod 19639  df-lss 19707  df-lsp 19747
This theorem is referenced by:  lspid  19757  lspss  19759  lspssid  19760  dochspss  38620  lcosslsp  44774
  Copyright terms: Public domain W3C validator