![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspval | Structured version Visualization version GIF version |
Description: The span of a set of vectors (in a left module). (spanval 28768 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspval | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspval.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspval.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | lspfval 19372 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
5 | 4 | fveq1d 6450 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
6 | 5 | adantr 474 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
7 | eqid 2778 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) | |
8 | sseq1 3845 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑡)) | |
9 | 8 | rabbidv 3386 | . . . 4 ⊢ (𝑠 = 𝑈 → {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
10 | 9 | inteqd 4717 | . . 3 ⊢ (𝑠 = 𝑈 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
11 | simpr 479 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
12 | 1 | fvexi 6462 | . . . . 5 ⊢ 𝑉 ∈ V |
13 | 12 | elpw2 5064 | . . . 4 ⊢ (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉) |
14 | 11, 13 | sylibr 226 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ∈ 𝒫 𝑉) |
15 | 1, 2 | lss1 19335 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
16 | sseq2 3846 | . . . . . 6 ⊢ (𝑡 = 𝑉 → (𝑈 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑉)) | |
17 | 16 | rspcev 3511 | . . . . 5 ⊢ ((𝑉 ∈ 𝑆 ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
18 | 15, 17 | sylan 575 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
19 | intexrab 5059 | . . . 4 ⊢ (∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 ↔ ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) | |
20 | 18, 19 | sylib 210 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) |
21 | 7, 10, 14, 20 | fvmptd3 6566 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
22 | 6, 21 | eqtrd 2814 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 {crab 3094 Vcvv 3398 ⊆ wss 3792 𝒫 cpw 4379 ∩ cint 4712 ↦ cmpt 4967 ‘cfv 6137 Basecbs 16259 LModclmod 19259 LSubSpclss 19328 LSpanclspn 19370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-0g 16492 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-grp 17816 df-lmod 19261 df-lss 19329 df-lsp 19371 |
This theorem is referenced by: lspid 19381 lspss 19383 lspssid 19384 dochspss 37537 lcosslsp 43252 |
Copyright terms: Public domain | W3C validator |