![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspval | Structured version Visualization version GIF version |
Description: The span of a set of vectors (in a left module). (spanval 31215 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspval | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspval.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspval.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | lspfval 20869 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
5 | 4 | fveq1d 6898 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
6 | 5 | adantr 479 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
7 | eqid 2725 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) | |
8 | sseq1 4002 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑡)) | |
9 | 8 | rabbidv 3426 | . . . 4 ⊢ (𝑠 = 𝑈 → {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
10 | 9 | inteqd 4955 | . . 3 ⊢ (𝑠 = 𝑈 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
11 | simpr 483 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
12 | 1 | fvexi 6910 | . . . . 5 ⊢ 𝑉 ∈ V |
13 | 12 | elpw2 5348 | . . . 4 ⊢ (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉) |
14 | 11, 13 | sylibr 233 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ∈ 𝒫 𝑉) |
15 | 1, 2 | lss1 20834 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
16 | sseq2 4003 | . . . . . 6 ⊢ (𝑡 = 𝑉 → (𝑈 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑉)) | |
17 | 16 | rspcev 3606 | . . . . 5 ⊢ ((𝑉 ∈ 𝑆 ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
18 | 15, 17 | sylan 578 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
19 | intexrab 5343 | . . . 4 ⊢ (∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 ↔ ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) | |
20 | 18, 19 | sylib 217 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) |
21 | 7, 10, 14, 20 | fvmptd3 7027 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
22 | 6, 21 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 {crab 3418 Vcvv 3461 ⊆ wss 3944 𝒫 cpw 4604 ∩ cint 4950 ↦ cmpt 5232 ‘cfv 6549 Basecbs 17183 LModclmod 20755 LSubSpclss 20827 LSpanclspn 20867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-lmod 20757 df-lss 20828 df-lsp 20868 |
This theorem is referenced by: lspid 20878 lspss 20880 lspssid 20881 dochspss 40981 lcosslsp 47692 |
Copyright terms: Public domain | W3C validator |