Step | Hyp | Ref
| Expression |
1 | | lspval.v |
. . . . 5
β’ π = (Baseβπ) |
2 | | lspval.s |
. . . . 5
β’ π = (LSubSpβπ) |
3 | | lspval.n |
. . . . 5
β’ π = (LSpanβπ) |
4 | 1, 2, 3 | lspfval 20728 |
. . . 4
β’ (π β LMod β π = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
5 | 4 | fveq1d 6892 |
. . 3
β’ (π β LMod β (πβπ) = ((π β π« π β¦ β© {π‘ β π β£ π β π‘})βπ)) |
6 | 5 | adantr 479 |
. 2
β’ ((π β LMod β§ π β π) β (πβπ) = ((π β π« π β¦ β© {π‘ β π β£ π β π‘})βπ)) |
7 | | eqid 2730 |
. . 3
β’ (π β π« π β¦ β© {π‘
β π β£ π β π‘}) = (π β π« π β¦ β© {π‘ β π β£ π β π‘}) |
8 | | sseq1 4006 |
. . . . 5
β’ (π = π β (π β π‘ β π β π‘)) |
9 | 8 | rabbidv 3438 |
. . . 4
β’ (π = π β {π‘ β π β£ π β π‘} = {π‘ β π β£ π β π‘}) |
10 | 9 | inteqd 4954 |
. . 3
β’ (π = π β β© {π‘ β π β£ π β π‘} = β© {π‘ β π β£ π β π‘}) |
11 | | simpr 483 |
. . . 4
β’ ((π β LMod β§ π β π) β π β π) |
12 | 1 | fvexi 6904 |
. . . . 5
β’ π β V |
13 | 12 | elpw2 5344 |
. . . 4
β’ (π β π« π β π β π) |
14 | 11, 13 | sylibr 233 |
. . 3
β’ ((π β LMod β§ π β π) β π β π« π) |
15 | 1, 2 | lss1 20693 |
. . . . 5
β’ (π β LMod β π β π) |
16 | | sseq2 4007 |
. . . . . 6
β’ (π‘ = π β (π β π‘ β π β π)) |
17 | 16 | rspcev 3611 |
. . . . 5
β’ ((π β π β§ π β π) β βπ‘ β π π β π‘) |
18 | 15, 17 | sylan 578 |
. . . 4
β’ ((π β LMod β§ π β π) β βπ‘ β π π β π‘) |
19 | | intexrab 5339 |
. . . 4
β’
(βπ‘ β
π π β π‘ β β© {π‘ β π β£ π β π‘} β V) |
20 | 18, 19 | sylib 217 |
. . 3
β’ ((π β LMod β§ π β π) β β© {π‘ β π β£ π β π‘} β V) |
21 | 7, 10, 14, 20 | fvmptd3 7020 |
. 2
β’ ((π β LMod β§ π β π) β ((π β π« π β¦ β© {π‘ β π β£ π β π‘})βπ) = β© {π‘ β π β£ π β π‘}) |
22 | 6, 21 | eqtrd 2770 |
1
β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β π β£ π β π‘}) |