MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspval Structured version   Visualization version   GIF version

Theorem lspval 19746
Description: The span of a set of vectors (in a left module). (spanval 29109 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspval ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Distinct variable groups:   𝑡,𝑆   𝑡,𝑈   𝑡,𝑉
Allowed substitution hints:   𝑁(𝑡)   𝑊(𝑡)

Proof of Theorem lspval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5 𝑉 = (Base‘𝑊)
2 lspval.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . . . 5 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 19744 . . . 4 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
54fveq1d 6671 . . 3 (𝑊 ∈ LMod → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
65adantr 483 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
7 eqid 2821 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})
8 sseq1 3991 . . . . 5 (𝑠 = 𝑈 → (𝑠𝑡𝑈𝑡))
98rabbidv 3480 . . . 4 (𝑠 = 𝑈 → {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
109inteqd 4880 . . 3 (𝑠 = 𝑈 {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
11 simpr 487 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈𝑉)
121fvexi 6683 . . . . 5 𝑉 ∈ V
1312elpw2 5247 . . . 4 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
1411, 13sylibr 236 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ∈ 𝒫 𝑉)
151, 2lss1 19709 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
16 sseq2 3992 . . . . . 6 (𝑡 = 𝑉 → (𝑈𝑡𝑈𝑉))
1716rspcev 3622 . . . . 5 ((𝑉𝑆𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
1815, 17sylan 582 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
19 intexrab 5242 . . . 4 (∃𝑡𝑆 𝑈𝑡 {𝑡𝑆𝑈𝑡} ∈ V)
2018, 19sylib 220 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → {𝑡𝑆𝑈𝑡} ∈ V)
217, 10, 14, 20fvmptd3 6790 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈) = {𝑡𝑆𝑈𝑡})
226, 21eqtrd 2856 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  𝒫 cpw 4538   cint 4875  cmpt 5145  cfv 6354  Basecbs 16482  LModclmod 19633  LSubSpclss 19702  LSpanclspn 19742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-lmod 19635  df-lss 19703  df-lsp 19743
This theorem is referenced by:  lspid  19753  lspss  19755  lspssid  19756  dochspss  38513  lcosslsp  44492
  Copyright terms: Public domain W3C validator