MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspval Structured version   Visualization version   GIF version

Theorem lspval 20906
Description: The span of a set of vectors (in a left module). (spanval 31308 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspval ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Distinct variable groups:   𝑡,𝑆   𝑡,𝑈   𝑡,𝑉
Allowed substitution hints:   𝑁(𝑡)   𝑊(𝑡)

Proof of Theorem lspval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5 𝑉 = (Base‘𝑊)
2 lspval.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . . . 5 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 20904 . . . 4 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
54fveq1d 6824 . . 3 (𝑊 ∈ LMod → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
65adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
7 eqid 2731 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})
8 sseq1 3960 . . . . 5 (𝑠 = 𝑈 → (𝑠𝑡𝑈𝑡))
98rabbidv 3402 . . . 4 (𝑠 = 𝑈 → {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
109inteqd 4902 . . 3 (𝑠 = 𝑈 {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
11 simpr 484 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈𝑉)
121fvexi 6836 . . . . 5 𝑉 ∈ V
1312elpw2 5272 . . . 4 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
1411, 13sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ∈ 𝒫 𝑉)
151, 2lss1 20869 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
16 sseq2 3961 . . . . . 6 (𝑡 = 𝑉 → (𝑈𝑡𝑈𝑉))
1716rspcev 3577 . . . . 5 ((𝑉𝑆𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
1815, 17sylan 580 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
19 intexrab 5285 . . . 4 (∃𝑡𝑆 𝑈𝑡 {𝑡𝑆𝑈𝑡} ∈ V)
2018, 19sylib 218 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → {𝑡𝑆𝑈𝑡} ∈ V)
217, 10, 14, 20fvmptd3 6952 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈) = {𝑡𝑆𝑈𝑡})
226, 21eqtrd 2766 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  wss 3902  𝒫 cpw 4550   cint 4897  cmpt 5172  cfv 6481  Basecbs 17117  LModclmod 20791  LSubSpclss 20862  LSpanclspn 20902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-lmod 20793  df-lss 20863  df-lsp 20903
This theorem is referenced by:  lspid  20913  lspss  20915  lspssid  20916  dochspss  41416  lcosslsp  48469
  Copyright terms: Public domain W3C validator