MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Structured version   Visualization version   GIF version

Theorem aspval 21276
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
aspval.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
aspval ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑆   𝑡,𝑉   𝑡,𝑊
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem aspval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5 𝐴 = (AlgSpan‘𝑊)
2 fveq2 6842 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 aspval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
42, 3eqtr4di 2794 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
54pweqd 4577 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
6 fveq2 6842 . . . . . . . . . 10 (𝑤 = 𝑊 → (SubRing‘𝑤) = (SubRing‘𝑊))
7 fveq2 6842 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 aspval.l . . . . . . . . . . 11 𝐿 = (LSubSp‘𝑊)
97, 8eqtr4di 2794 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
106, 9ineq12d 4173 . . . . . . . . 9 (𝑤 = 𝑊 → ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) = ((SubRing‘𝑊) ∩ 𝐿))
1110rabeqdv 3422 . . . . . . . 8 (𝑤 = 𝑊 → {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
1211inteqd 4912 . . . . . . 7 (𝑤 = 𝑊 {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
135, 12mpteq12dv 5196 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
14 df-asp 21260 . . . . . 6 AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
153fvexi 6856 . . . . . . . 8 𝑉 ∈ V
1615pwex 5335 . . . . . . 7 𝒫 𝑉 ∈ V
1716mptex 7173 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) ∈ V
1813, 14, 17fvmpt 6948 . . . . 5 (𝑊 ∈ AssAlg → (AlgSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
191, 18eqtrid 2788 . . . 4 (𝑊 ∈ AssAlg → 𝐴 = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
2019fveq1d 6844 . . 3 (𝑊 ∈ AssAlg → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
2120adantr 481 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
22 eqid 2736 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
23 sseq1 3969 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑡𝑆𝑡))
2423rabbidv 3415 . . . 4 (𝑠 = 𝑆 → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
2524inteqd 4912 . . 3 (𝑠 = 𝑆 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
26 simpr 485 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
2715elpw2 5302 . . . 4 (𝑆 ∈ 𝒫 𝑉𝑆𝑉)
2826, 27sylibr 233 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
29 assaring 21267 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
303subrgid 20224 . . . . . . 7 (𝑊 ∈ Ring → 𝑉 ∈ (SubRing‘𝑊))
3129, 30syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉 ∈ (SubRing‘𝑊))
32 assalmod 21266 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
333, 8lss1 20399 . . . . . . 7 (𝑊 ∈ LMod → 𝑉𝐿)
3432, 33syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉𝐿)
3531, 34elind 4154 . . . . 5 (𝑊 ∈ AssAlg → 𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿))
36 sseq2 3970 . . . . . 6 (𝑡 = 𝑉 → (𝑆𝑡𝑆𝑉))
3736rspcev 3581 . . . . 5 ((𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
3835, 37sylan 580 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
39 intexrab 5297 . . . 4 (∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4038, 39sylib 217 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4122, 25, 28, 40fvmptd3 6971 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
4221, 41eqtrd 2776 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560   cint 4907  cmpt 5188  cfv 6496  Basecbs 17083  Ringcrg 19964  SubRingcsubrg 20218  LModclmod 20322  LSubSpclss 20392  AssAlgcasa 21256  AlgSpancasp 21257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-assa 21259  df-asp 21260
This theorem is referenced by:  asplss  21277  aspid  21278  aspsubrg  21279  aspss  21280  aspssid  21281  aspval2  21301
  Copyright terms: Public domain W3C validator