MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Structured version   Visualization version   GIF version

Theorem aspval 20987
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
aspval.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
aspval ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑆   𝑡,𝑉   𝑡,𝑊
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem aspval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5 𝐴 = (AlgSpan‘𝑊)
2 fveq2 6756 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 aspval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
42, 3eqtr4di 2797 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
54pweqd 4549 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
6 fveq2 6756 . . . . . . . . . 10 (𝑤 = 𝑊 → (SubRing‘𝑤) = (SubRing‘𝑊))
7 fveq2 6756 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 aspval.l . . . . . . . . . . 11 𝐿 = (LSubSp‘𝑊)
97, 8eqtr4di 2797 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
106, 9ineq12d 4144 . . . . . . . . 9 (𝑤 = 𝑊 → ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) = ((SubRing‘𝑊) ∩ 𝐿))
1110rabeqdv 3409 . . . . . . . 8 (𝑤 = 𝑊 → {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
1211inteqd 4881 . . . . . . 7 (𝑤 = 𝑊 {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
135, 12mpteq12dv 5161 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
14 df-asp 20971 . . . . . 6 AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
153fvexi 6770 . . . . . . . 8 𝑉 ∈ V
1615pwex 5298 . . . . . . 7 𝒫 𝑉 ∈ V
1716mptex 7081 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) ∈ V
1813, 14, 17fvmpt 6857 . . . . 5 (𝑊 ∈ AssAlg → (AlgSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
191, 18eqtrid 2790 . . . 4 (𝑊 ∈ AssAlg → 𝐴 = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
2019fveq1d 6758 . . 3 (𝑊 ∈ AssAlg → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
2120adantr 480 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
22 eqid 2738 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
23 sseq1 3942 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑡𝑆𝑡))
2423rabbidv 3404 . . . 4 (𝑠 = 𝑆 → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
2524inteqd 4881 . . 3 (𝑠 = 𝑆 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
26 simpr 484 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
2715elpw2 5264 . . . 4 (𝑆 ∈ 𝒫 𝑉𝑆𝑉)
2826, 27sylibr 233 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
29 assaring 20978 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
303subrgid 19941 . . . . . . 7 (𝑊 ∈ Ring → 𝑉 ∈ (SubRing‘𝑊))
3129, 30syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉 ∈ (SubRing‘𝑊))
32 assalmod 20977 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
333, 8lss1 20115 . . . . . . 7 (𝑊 ∈ LMod → 𝑉𝐿)
3432, 33syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉𝐿)
3531, 34elind 4124 . . . . 5 (𝑊 ∈ AssAlg → 𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿))
36 sseq2 3943 . . . . . 6 (𝑡 = 𝑉 → (𝑆𝑡𝑆𝑉))
3736rspcev 3552 . . . . 5 ((𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
3835, 37sylan 579 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
39 intexrab 5259 . . . 4 (∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4038, 39sylib 217 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4122, 25, 28, 40fvmptd3 6880 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
4221, 41eqtrd 2778 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   cint 4876  cmpt 5153  cfv 6418  Basecbs 16840  Ringcrg 19698  SubRingcsubrg 19935  LModclmod 20038  LSubSpclss 20108  AssAlgcasa 20967  AlgSpancasp 20968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-assa 20970  df-asp 20971
This theorem is referenced by:  asplss  20988  aspid  20989  aspsubrg  20990  aspss  20991  aspssid  20992  aspval2  21012
  Copyright terms: Public domain W3C validator