MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Structured version   Visualization version   GIF version

Theorem aspval 20856
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
aspval.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
aspval ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑆   𝑡,𝑉   𝑡,𝑊
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem aspval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5 𝐴 = (AlgSpan‘𝑊)
2 fveq2 6735 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 aspval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
42, 3eqtr4di 2797 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
54pweqd 4546 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
6 fveq2 6735 . . . . . . . . . 10 (𝑤 = 𝑊 → (SubRing‘𝑤) = (SubRing‘𝑊))
7 fveq2 6735 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 aspval.l . . . . . . . . . . 11 𝐿 = (LSubSp‘𝑊)
97, 8eqtr4di 2797 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
106, 9ineq12d 4142 . . . . . . . . 9 (𝑤 = 𝑊 → ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) = ((SubRing‘𝑊) ∩ 𝐿))
1110rabeqdv 3407 . . . . . . . 8 (𝑤 = 𝑊 → {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
1211inteqd 4878 . . . . . . 7 (𝑤 = 𝑊 {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
135, 12mpteq12dv 5154 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
14 df-asp 20840 . . . . . 6 AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
153fvexi 6749 . . . . . . . 8 𝑉 ∈ V
1615pwex 5287 . . . . . . 7 𝒫 𝑉 ∈ V
1716mptex 7057 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) ∈ V
1813, 14, 17fvmpt 6836 . . . . 5 (𝑊 ∈ AssAlg → (AlgSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
191, 18eqtrid 2790 . . . 4 (𝑊 ∈ AssAlg → 𝐴 = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
2019fveq1d 6737 . . 3 (𝑊 ∈ AssAlg → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
2120adantr 484 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
22 eqid 2738 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
23 sseq1 3940 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑡𝑆𝑡))
2423rabbidv 3402 . . . 4 (𝑠 = 𝑆 → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
2524inteqd 4878 . . 3 (𝑠 = 𝑆 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
26 simpr 488 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
2715elpw2 5252 . . . 4 (𝑆 ∈ 𝒫 𝑉𝑆𝑉)
2826, 27sylibr 237 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
29 assaring 20847 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
303subrgid 19826 . . . . . . 7 (𝑊 ∈ Ring → 𝑉 ∈ (SubRing‘𝑊))
3129, 30syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉 ∈ (SubRing‘𝑊))
32 assalmod 20846 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
333, 8lss1 19999 . . . . . . 7 (𝑊 ∈ LMod → 𝑉𝐿)
3432, 33syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉𝐿)
3531, 34elind 4122 . . . . 5 (𝑊 ∈ AssAlg → 𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿))
36 sseq2 3941 . . . . . 6 (𝑡 = 𝑉 → (𝑆𝑡𝑆𝑉))
3736rspcev 3549 . . . . 5 ((𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
3835, 37sylan 583 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
39 intexrab 5247 . . . 4 (∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4038, 39sylib 221 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4122, 25, 28, 40fvmptd3 6859 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
4221, 41eqtrd 2778 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  wrex 3063  {crab 3066  Vcvv 3420  cin 3879  wss 3880  𝒫 cpw 4527   cint 4873  cmpt 5149  cfv 6397  Basecbs 16784  Ringcrg 19586  SubRingcsubrg 19820  LModclmod 19923  LSubSpclss 19992  AssAlgcasa 20836  AlgSpancasp 20837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-en 8647  df-dom 8648  df-sdom 8649  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-nn 11855  df-2 11917  df-sets 16741  df-slot 16759  df-ndx 16769  df-base 16785  df-ress 16809  df-plusg 16839  df-0g 16970  df-mgm 18138  df-sgrp 18187  df-mnd 18198  df-grp 18392  df-mgp 19529  df-ur 19541  df-ring 19588  df-subrg 19822  df-lmod 19925  df-lss 19993  df-assa 20839  df-asp 20840
This theorem is referenced by:  asplss  20857  aspid  20858  aspsubrg  20859  aspss  20860  aspssid  20861  aspval2  20882
  Copyright terms: Public domain W3C validator