MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Structured version   Visualization version   GIF version

Theorem aspval 21810
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpanβ€˜π‘Š)
aspval.v 𝑉 = (Baseβ€˜π‘Š)
aspval.l 𝐿 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
aspval ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑆 βŠ† 𝑑})
Distinct variable groups:   𝑑,𝐿   𝑑,𝑆   𝑑,𝑉   𝑑,π‘Š
Allowed substitution hint:   𝐴(𝑑)

Proof of Theorem aspval
Dummy variables 𝑠 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5 𝐴 = (AlgSpanβ€˜π‘Š)
2 fveq2 6894 . . . . . . . . 9 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
3 aspval.v . . . . . . . . 9 𝑉 = (Baseβ€˜π‘Š)
42, 3eqtr4di 2783 . . . . . . . 8 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
54pweqd 4620 . . . . . . 7 (𝑀 = π‘Š β†’ 𝒫 (Baseβ€˜π‘€) = 𝒫 𝑉)
6 fveq2 6894 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (SubRingβ€˜π‘€) = (SubRingβ€˜π‘Š))
7 fveq2 6894 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = (LSubSpβ€˜π‘Š))
8 aspval.l . . . . . . . . . . 11 𝐿 = (LSubSpβ€˜π‘Š)
97, 8eqtr4di 2783 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = 𝐿)
106, 9ineq12d 4212 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((SubRingβ€˜π‘€) ∩ (LSubSpβ€˜π‘€)) = ((SubRingβ€˜π‘Š) ∩ 𝐿))
1110rabeqdv 3435 . . . . . . . 8 (𝑀 = π‘Š β†’ {𝑑 ∈ ((SubRingβ€˜π‘€) ∩ (LSubSpβ€˜π‘€)) ∣ 𝑠 βŠ† 𝑑} = {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑})
1211inteqd 4954 . . . . . . 7 (𝑀 = π‘Š β†’ ∩ {𝑑 ∈ ((SubRingβ€˜π‘€) ∩ (LSubSpβ€˜π‘€)) ∣ 𝑠 βŠ† 𝑑} = ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑})
135, 12mpteq12dv 5239 . . . . . 6 (𝑀 = π‘Š β†’ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘€) ∩ (LSubSpβ€˜π‘€)) ∣ 𝑠 βŠ† 𝑑}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑}))
14 df-asp 21792 . . . . . 6 AlgSpan = (𝑀 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘€) ∩ (LSubSpβ€˜π‘€)) ∣ 𝑠 βŠ† 𝑑}))
153fvexi 6908 . . . . . . . 8 𝑉 ∈ V
1615pwex 5379 . . . . . . 7 𝒫 𝑉 ∈ V
1716mptex 7233 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑}) ∈ V
1813, 14, 17fvmpt 7002 . . . . 5 (π‘Š ∈ AssAlg β†’ (AlgSpanβ€˜π‘Š) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑}))
191, 18eqtrid 2777 . . . 4 (π‘Š ∈ AssAlg β†’ 𝐴 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑}))
2019fveq1d 6896 . . 3 (π‘Š ∈ AssAlg β†’ (π΄β€˜π‘†) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑})β€˜π‘†))
2120adantr 479 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑})β€˜π‘†))
22 eqid 2725 . . 3 (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑})
23 sseq1 4003 . . . . 5 (𝑠 = 𝑆 β†’ (𝑠 βŠ† 𝑑 ↔ 𝑆 βŠ† 𝑑))
2423rabbidv 3427 . . . 4 (𝑠 = 𝑆 β†’ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑} = {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑆 βŠ† 𝑑})
2524inteqd 4954 . . 3 (𝑠 = 𝑆 β†’ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑} = ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑆 βŠ† 𝑑})
26 simpr 483 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ 𝑆 βŠ† 𝑉)
2715elpw2 5347 . . . 4 (𝑆 ∈ 𝒫 𝑉 ↔ 𝑆 βŠ† 𝑉)
2826, 27sylibr 233 . . 3 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ 𝑆 ∈ 𝒫 𝑉)
29 assaring 21799 . . . . . . 7 (π‘Š ∈ AssAlg β†’ π‘Š ∈ Ring)
303subrgid 20516 . . . . . . 7 (π‘Š ∈ Ring β†’ 𝑉 ∈ (SubRingβ€˜π‘Š))
3129, 30syl 17 . . . . . 6 (π‘Š ∈ AssAlg β†’ 𝑉 ∈ (SubRingβ€˜π‘Š))
32 assalmod 21798 . . . . . . 7 (π‘Š ∈ AssAlg β†’ π‘Š ∈ LMod)
333, 8lss1 20826 . . . . . . 7 (π‘Š ∈ LMod β†’ 𝑉 ∈ 𝐿)
3432, 33syl 17 . . . . . 6 (π‘Š ∈ AssAlg β†’ 𝑉 ∈ 𝐿)
3531, 34elind 4193 . . . . 5 (π‘Š ∈ AssAlg β†’ 𝑉 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿))
36 sseq2 4004 . . . . . 6 (𝑑 = 𝑉 β†’ (𝑆 βŠ† 𝑑 ↔ 𝑆 βŠ† 𝑉))
3736rspcev 3607 . . . . 5 ((𝑉 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∧ 𝑆 βŠ† 𝑉) β†’ βˆƒπ‘‘ ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿)𝑆 βŠ† 𝑑)
3835, 37sylan 578 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ βˆƒπ‘‘ ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿)𝑆 βŠ† 𝑑)
39 intexrab 5342 . . . 4 (βˆƒπ‘‘ ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿)𝑆 βŠ† 𝑑 ↔ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑆 βŠ† 𝑑} ∈ V)
4038, 39sylib 217 . . 3 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑆 βŠ† 𝑑} ∈ V)
4122, 25, 28, 40fvmptd3 7025 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑠 βŠ† 𝑑})β€˜π‘†) = ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑆 βŠ† 𝑑})
4221, 41eqtrd 2765 1 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = ∩ {𝑑 ∈ ((SubRingβ€˜π‘Š) ∩ 𝐿) ∣ 𝑆 βŠ† 𝑑})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3060  {crab 3419  Vcvv 3463   ∩ cin 3944   βŠ† wss 3945  π’« cpw 4603  βˆ© cint 4949   ↦ cmpt 5231  β€˜cfv 6547  Basecbs 17179  Ringcrg 20177  SubRingcsubrg 20510  LModclmod 20747  LSubSpclss 20819  AssAlgcasa 21788  AlgSpancasp 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18897  df-mgp 20079  df-ur 20126  df-ring 20179  df-subrg 20512  df-lmod 20749  df-lss 20820  df-assa 21791  df-asp 21792
This theorem is referenced by:  asplss  21811  aspid  21812  aspsubrg  21813  aspss  21814  aspssid  21815  aspval2  21835
  Copyright terms: Public domain W3C validator