MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Structured version   Visualization version   GIF version

Theorem aspval 21823
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
aspval.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
aspval ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑆   𝑡,𝑉   𝑡,𝑊
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem aspval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5 𝐴 = (AlgSpan‘𝑊)
2 fveq2 6896 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 aspval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
42, 3eqtr4di 2783 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
54pweqd 4621 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
6 fveq2 6896 . . . . . . . . . 10 (𝑤 = 𝑊 → (SubRing‘𝑤) = (SubRing‘𝑊))
7 fveq2 6896 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 aspval.l . . . . . . . . . . 11 𝐿 = (LSubSp‘𝑊)
97, 8eqtr4di 2783 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
106, 9ineq12d 4211 . . . . . . . . 9 (𝑤 = 𝑊 → ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) = ((SubRing‘𝑊) ∩ 𝐿))
1110rabeqdv 3434 . . . . . . . 8 (𝑤 = 𝑊 → {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
1211inteqd 4955 . . . . . . 7 (𝑤 = 𝑊 {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
135, 12mpteq12dv 5240 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
14 df-asp 21805 . . . . . 6 AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
153fvexi 6910 . . . . . . . 8 𝑉 ∈ V
1615pwex 5380 . . . . . . 7 𝒫 𝑉 ∈ V
1716mptex 7235 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) ∈ V
1813, 14, 17fvmpt 7004 . . . . 5 (𝑊 ∈ AssAlg → (AlgSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
191, 18eqtrid 2777 . . . 4 (𝑊 ∈ AssAlg → 𝐴 = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
2019fveq1d 6898 . . 3 (𝑊 ∈ AssAlg → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
2120adantr 479 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
22 eqid 2725 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
23 sseq1 4002 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑡𝑆𝑡))
2423rabbidv 3426 . . . 4 (𝑠 = 𝑆 → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
2524inteqd 4955 . . 3 (𝑠 = 𝑆 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
26 simpr 483 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
2715elpw2 5348 . . . 4 (𝑆 ∈ 𝒫 𝑉𝑆𝑉)
2826, 27sylibr 233 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
29 assaring 21812 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
303subrgid 20524 . . . . . . 7 (𝑊 ∈ Ring → 𝑉 ∈ (SubRing‘𝑊))
3129, 30syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉 ∈ (SubRing‘𝑊))
32 assalmod 21811 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
333, 8lss1 20834 . . . . . . 7 (𝑊 ∈ LMod → 𝑉𝐿)
3432, 33syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉𝐿)
3531, 34elind 4192 . . . . 5 (𝑊 ∈ AssAlg → 𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿))
36 sseq2 4003 . . . . . 6 (𝑡 = 𝑉 → (𝑆𝑡𝑆𝑉))
3736rspcev 3606 . . . . 5 ((𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
3835, 37sylan 578 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
39 intexrab 5343 . . . 4 (∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4038, 39sylib 217 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
4122, 25, 28, 40fvmptd3 7027 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
4221, 41eqtrd 2765 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3059  {crab 3418  Vcvv 3461  cin 3943  wss 3944  𝒫 cpw 4604   cint 4950  cmpt 5232  cfv 6549  Basecbs 17183  Ringcrg 20185  SubRingcsubrg 20518  LModclmod 20755  LSubSpclss 20827  AssAlgcasa 21801  AlgSpancasp 21802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-mgp 20087  df-ur 20134  df-ring 20187  df-subrg 20520  df-lmod 20757  df-lss 20828  df-assa 21804  df-asp 21805
This theorem is referenced by:  asplss  21824  aspid  21825  aspsubrg  21826  aspss  21827  aspssid  21828  aspval2  21848
  Copyright terms: Public domain W3C validator