| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsval | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsfval 22946 | . . . 4 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})) |
| 3 | 2 | fveq1d 6830 | . . 3 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
| 5 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) | |
| 6 | sseq1 3955 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
| 7 | 6 | rabbidv 3402 | . . . 4 ⊢ (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 8 | 7 | inteqd 4902 | . . 3 ⊢ (𝑦 = 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 9 | 1 | topopn 22827 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 10 | elpw2g 5273 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
| 12 | 11 | biimpar 477 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
| 13 | 1 | topcld 22956 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 14 | sseq2 3956 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
| 15 | 14 | rspcev 3572 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
| 16 | 13, 15 | sylan 580 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
| 17 | intexrab 5287 | . . . 4 ⊢ (∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) | |
| 18 | 16, 17 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) |
| 19 | 5, 8, 12, 18 | fvmptd3 6958 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 20 | 4, 19 | eqtrd 2766 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 ∩ cint 4897 ↦ cmpt 5174 ‘cfv 6487 Topctop 22814 Clsdccld 22937 clsccl 22939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-top 22815 df-cld 22940 df-cls 22942 |
| This theorem is referenced by: cldcls 22963 clscld 22968 clsf 22969 clsval2 22971 clsss 22975 sscls 22977 |
| Copyright terms: Public domain | W3C validator |