![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsval | Structured version Visualization version GIF version |
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsfval 21207 | . . . 4 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})) |
3 | 2 | fveq1d 6439 | . . 3 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
4 | 3 | adantr 474 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
5 | eqid 2825 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) | |
6 | sseq1 3851 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
7 | 6 | rabbidv 3402 | . . . 4 ⊢ (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
8 | 7 | inteqd 4704 | . . 3 ⊢ (𝑦 = 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
9 | 1 | topopn 21088 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
10 | elpw2g 5051 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
12 | 11 | biimpar 471 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
13 | 1 | topcld 21217 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
14 | sseq2 3852 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
15 | 14 | rspcev 3526 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
16 | 13, 15 | sylan 575 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
17 | intexrab 5047 | . . . 4 ⊢ (∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) | |
18 | 16, 17 | sylib 210 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) |
19 | 5, 8, 12, 18 | fvmptd3 6555 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
20 | 4, 19 | eqtrd 2861 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 {crab 3121 Vcvv 3414 ⊆ wss 3798 𝒫 cpw 4380 ∪ cuni 4660 ∩ cint 4699 ↦ cmpt 4954 ‘cfv 6127 Topctop 21075 Clsdccld 21198 clsccl 21200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-top 21076 df-cld 21201 df-cls 21203 |
This theorem is referenced by: cldcls 21224 clscld 21229 clsf 21230 clsval2 21232 clsss 21236 sscls 21238 |
Copyright terms: Public domain | W3C validator |