| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsval | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsfval 22933 | . . . 4 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})) |
| 3 | 2 | fveq1d 6819 | . . 3 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
| 5 | eqid 2730 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) | |
| 6 | sseq1 3958 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
| 7 | 6 | rabbidv 3400 | . . . 4 ⊢ (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 8 | 7 | inteqd 4900 | . . 3 ⊢ (𝑦 = 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 9 | 1 | topopn 22814 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 10 | elpw2g 5269 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
| 12 | 11 | biimpar 477 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
| 13 | 1 | topcld 22943 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 14 | sseq2 3959 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
| 15 | 14 | rspcev 3575 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
| 16 | 13, 15 | sylan 580 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
| 17 | intexrab 5283 | . . . 4 ⊢ (∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) | |
| 18 | 16, 17 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) |
| 19 | 5, 8, 12, 18 | fvmptd3 6947 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 20 | 4, 19 | eqtrd 2765 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 {crab 3393 Vcvv 3434 ⊆ wss 3900 𝒫 cpw 4548 ∪ cuni 4857 ∩ cint 4895 ↦ cmpt 5170 ‘cfv 6477 Topctop 22801 Clsdccld 22924 clsccl 22926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-top 22802 df-cld 22927 df-cls 22929 |
| This theorem is referenced by: cldcls 22950 clscld 22955 clsf 22956 clsval2 22958 clsss 22962 sscls 22964 |
| Copyright terms: Public domain | W3C validator |