MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval Structured version   Visualization version   GIF version

Theorem clsval 21640
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem clsval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21clsfval 21628 . . . 4 (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}))
32fveq1d 6665 . . 3 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
43adantr 483 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
5 eqid 2820 . . 3 (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})
6 sseq1 3985 . . . . 5 (𝑦 = 𝑆 → (𝑦𝑥𝑆𝑥))
76rabbidv 3477 . . . 4 (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
87inteqd 4874 . . 3 (𝑦 = 𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
91topopn 21509 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 5240 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 17 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 480 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
131topcld 21638 . . . . 5 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
14 sseq2 3986 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥𝑆𝑋))
1514rspcev 3620 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
1613, 15sylan 582 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
17 intexrab 5236 . . . 4 (∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
1816, 17sylib 220 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
195, 8, 12, 18fvmptd3 6784 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
204, 19eqtrd 2855 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3138  {crab 3141  Vcvv 3491  wss 3929  𝒫 cpw 4532   cuni 4831   cint 4869  cmpt 5139  cfv 6348  Topctop 21496  Clsdccld 21619  clsccl 21621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-top 21497  df-cld 21622  df-cls 21624
This theorem is referenced by:  cldcls  21645  clscld  21650  clsf  21651  clsval2  21653  clsss  21657  sscls  21659
  Copyright terms: Public domain W3C validator