![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsval | Structured version Visualization version GIF version |
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsfval 22947 | . . . 4 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})) |
3 | 2 | fveq1d 6902 | . . 3 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
4 | 3 | adantr 479 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
5 | eqid 2727 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) | |
6 | sseq1 4005 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
7 | 6 | rabbidv 3436 | . . . 4 ⊢ (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
8 | 7 | inteqd 4956 | . . 3 ⊢ (𝑦 = 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
9 | 1 | topopn 22826 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
10 | elpw2g 5348 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
12 | 11 | biimpar 476 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
13 | 1 | topcld 22957 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
14 | sseq2 4006 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
15 | 14 | rspcev 3609 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
16 | 13, 15 | sylan 578 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
17 | intexrab 5344 | . . . 4 ⊢ (∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) | |
18 | 16, 17 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) |
19 | 5, 8, 12, 18 | fvmptd3 7031 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
20 | 4, 19 | eqtrd 2767 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3066 {crab 3428 Vcvv 3471 ⊆ wss 3947 𝒫 cpw 4604 ∪ cuni 4910 ∩ cint 4951 ↦ cmpt 5233 ‘cfv 6551 Topctop 22813 Clsdccld 22938 clsccl 22940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-top 22814 df-cld 22941 df-cls 22943 |
This theorem is referenced by: cldcls 22964 clscld 22969 clsf 22970 clsval2 22972 clsss 22976 sscls 22978 |
Copyright terms: Public domain | W3C validator |