![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsval | Structured version Visualization version GIF version |
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsfval 22880 | . . . 4 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})) |
3 | 2 | fveq1d 6886 | . . 3 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆)) |
5 | eqid 2726 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) = (𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥}) | |
6 | sseq1 4002 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
7 | 6 | rabbidv 3434 | . . . 4 ⊢ (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
8 | 7 | inteqd 4948 | . . 3 ⊢ (𝑦 = 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
9 | 1 | topopn 22759 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
10 | elpw2g 5337 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
12 | 11 | biimpar 477 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
13 | 1 | topcld 22890 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
14 | sseq2 4003 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
15 | 14 | rspcev 3606 | . . . . 5 ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
16 | 13, 15 | sylan 579 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥) |
17 | intexrab 5333 | . . . 4 ⊢ (∃𝑥 ∈ (Clsd‘𝐽)𝑆 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) | |
18 | 16, 17 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ V) |
19 | 5, 8, 12, 18 | fvmptd3 7014 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦 ⊆ 𝑥})‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
20 | 4, 19 | eqtrd 2766 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 {crab 3426 Vcvv 3468 ⊆ wss 3943 𝒫 cpw 4597 ∪ cuni 4902 ∩ cint 4943 ↦ cmpt 5224 ‘cfv 6536 Topctop 22746 Clsdccld 22871 clsccl 22873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-top 22747 df-cld 22874 df-cls 22876 |
This theorem is referenced by: cldcls 22897 clscld 22902 clsf 22903 clsval2 22905 clsss 22909 sscls 22911 |
Copyright terms: Public domain | W3C validator |