MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval Structured version   Visualization version   GIF version

Theorem clsval 22940
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem clsval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21clsfval 22928 . . . 4 (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}))
32fveq1d 6828 . . 3 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
43adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
5 eqid 2729 . . 3 (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})
6 sseq1 3963 . . . . 5 (𝑦 = 𝑆 → (𝑦𝑥𝑆𝑥))
76rabbidv 3404 . . . 4 (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
87inteqd 4904 . . 3 (𝑦 = 𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
91topopn 22809 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 5275 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 17 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 477 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
131topcld 22938 . . . . 5 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
14 sseq2 3964 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥𝑆𝑋))
1514rspcev 3579 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
1613, 15sylan 580 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
17 intexrab 5289 . . . 4 (∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
1816, 17sylib 218 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
195, 8, 12, 18fvmptd3 6957 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
204, 19eqtrd 2764 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  Vcvv 3438  wss 3905  𝒫 cpw 4553   cuni 4861   cint 4899  cmpt 5176  cfv 6486  Topctop 22796  Clsdccld 22919  clsccl 22921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22797  df-cld 22922  df-cls 22924
This theorem is referenced by:  cldcls  22945  clscld  22950  clsf  22951  clsval2  22953  clsss  22957  sscls  22959
  Copyright terms: Public domain W3C validator