| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onintrab2 | Structured version Visualization version GIF version | ||
| Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| onintrab2 | ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intexrab 5302 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
| 2 | onintrab 7772 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃wrex 3053 {crab 3405 Vcvv 3447 ∩ cint 4910 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: oeeulem 8565 cofon1 8636 cofon2 8637 cofonr 8638 naddcllem 8640 naddunif 8657 cardmin2 9952 cardaleph 10042 cardmin 10517 nosepon 27577 onvf1odlem4 35093 minregex 43523 |
| Copyright terms: Public domain | W3C validator |