| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onintrab2 | Structured version Visualization version GIF version | ||
| Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| onintrab2 | ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intexrab 5305 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
| 2 | onintrab 7775 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃wrex 3054 {crab 3408 Vcvv 3450 ∩ cint 4913 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: oeeulem 8568 cofon1 8639 cofon2 8640 cofonr 8641 naddcllem 8643 naddunif 8660 cardmin2 9959 cardaleph 10049 cardmin 10524 nosepon 27584 onvf1odlem4 35100 minregex 43530 |
| Copyright terms: Public domain | W3C validator |