MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onintrab2 Structured version   Visualization version   GIF version

Theorem onintrab2 7833
Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.)
Assertion
Ref Expression
onintrab2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)

Proof of Theorem onintrab2
StepHypRef Expression
1 intexrab 5365 . 2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ V)
2 onintrab 7832 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ {𝑥 ∈ On ∣ 𝜑} ∈ On)
31, 2bitri 275 1 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488   cint 4970  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by:  oeeulem  8657  cofon1  8728  cofon2  8729  cofonr  8730  naddcllem  8732  naddunif  8749  cardmin2  10068  cardaleph  10158  cardmin  10633  nosepon  27728  minregex  43496
  Copyright terms: Public domain W3C validator