MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onintrab2 Structured version   Visualization version   GIF version

Theorem onintrab2 7791
Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.)
Assertion
Ref Expression
onintrab2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)

Proof of Theorem onintrab2
StepHypRef Expression
1 intexrab 5317 . 2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ V)
2 onintrab 7790 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ {𝑥 ∈ On ∣ 𝜑} ∈ On)
31, 2bitri 275 1 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459   cint 4922  Oncon0 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356
This theorem is referenced by:  oeeulem  8613  cofon1  8684  cofon2  8685  cofonr  8686  naddcllem  8688  naddunif  8705  cardmin2  10013  cardaleph  10103  cardmin  10578  nosepon  27629  minregex  43558
  Copyright terms: Public domain W3C validator