Proof of Theorem dchrptlem1
Step | Hyp | Ref
| Expression |
1 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑢 = 𝐶 → (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ↔ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)))) |
2 | 1 | anbi1d 629 |
. . . . . 6
⊢ (𝑢 = 𝐶 → ((((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)) ↔ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
3 | 2 | rexbidv 3225 |
. . . . 5
⊢ (𝑢 = 𝐶 → (∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)) ↔ ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
4 | 3 | iotabidv 6402 |
. . . 4
⊢ (𝑢 = 𝐶 → (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚))) = (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
5 | | dchrpt.5 |
. . . 4
⊢ 𝑋 = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
6 | | iotaex 6398 |
. . . 4
⊢
(℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚))) ∈ V |
7 | 4, 5, 6 | fvmpt3i 6862 |
. . 3
⊢ (𝐶 ∈ 𝑈 → (𝑋‘𝐶) = (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
8 | 7 | ad2antlr 723 |
. 2
⊢ (((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) → (𝑋‘𝐶) = (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
9 | | ovex 7288 |
. . 3
⊢ (𝑇↑𝑀) ∈ V |
10 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) |
11 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) |
12 | 11 | simprd 495 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼))) |
13 | 10, 12 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → (𝑚 · (𝑊‘𝐼)) = (𝑀 · (𝑊‘𝐼))) |
14 | | simp-4l 779 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → 𝜑) |
15 | | simplr 765 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → 𝑚 ∈ ℤ) |
16 | 11 | simpld 494 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → 𝑀 ∈ ℤ) |
17 | | dchrpt.n |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℕ) |
18 | 17 | nnnn0d 12223 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
19 | | dchrpt.z |
. . . . . . . . . . . . . . . . 17
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
20 | 19 | zncrng 20664 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ 𝑍 ∈
CRing) |
21 | | crngring 19710 |
. . . . . . . . . . . . . . . 16
⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) |
22 | | dchrpt.u |
. . . . . . . . . . . . . . . . 17
⊢ 𝑈 = (Unit‘𝑍) |
23 | | dchrpt.h |
. . . . . . . . . . . . . . . . 17
⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
24 | 22, 23 | unitgrp 19824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
25 | 18, 20, 21, 24 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻 ∈ Grp) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐻 ∈ Grp) |
27 | | dchrpt.w |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑊 ∈ Word 𝑈) |
28 | | wrdf 14150 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word 𝑈 → 𝑊:(0..^(♯‘𝑊))⟶𝑈) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶𝑈) |
30 | | dchrpt.i |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ dom 𝑊) |
31 | 29 | fdmd 6595 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
32 | 30, 31 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ (0..^(♯‘𝑊))) |
33 | 29, 32 | ffvelrnd 6944 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑊‘𝐼) ∈ 𝑈) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊‘𝐼) ∈ 𝑈) |
35 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑚 ∈ ℤ) |
36 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ) |
37 | 22, 23 | unitgrpbas 19823 |
. . . . . . . . . . . . . . 15
⊢ 𝑈 = (Base‘𝐻) |
38 | | dchrpt.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (od‘𝐻) |
39 | | dchrpt.m |
. . . . . . . . . . . . . . 15
⊢ · =
(.g‘𝐻) |
40 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝐻) = (0g‘𝐻) |
41 | 37, 38, 39, 40 | odcong 19072 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Grp ∧ (𝑊‘𝐼) ∈ 𝑈 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀) ↔ (𝑚 · (𝑊‘𝐼)) = (𝑀 · (𝑊‘𝐼)))) |
42 | 26, 34, 35, 36, 41 | syl112anc 1372 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀) ↔ (𝑚 · (𝑊‘𝐼)) = (𝑀 · (𝑊‘𝐼)))) |
43 | | dchrpt.t |
. . . . . . . . . . . . . . . . 17
⊢ 𝑇 =
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) |
44 | | neg1cn 12017 |
. . . . . . . . . . . . . . . . . 18
⊢ -1 ∈
ℂ |
45 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
46 | | dchrpt.b |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐵 = (Base‘𝑍) |
47 | 19, 46 | znfi 20679 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
48 | 17, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐵 ∈ Fin) |
49 | 46, 22 | unitss 19817 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑈 ⊆ 𝐵 |
50 | | ssfi 8918 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐵 ∈ Fin ∧ 𝑈 ⊆ 𝐵) → 𝑈 ∈ Fin) |
51 | 48, 49, 50 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑈 ∈ Fin) |
52 | 37, 38 | odcl2 19087 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊‘𝐼) ∈ 𝑈) → (𝑂‘(𝑊‘𝐼)) ∈ ℕ) |
53 | 25, 51, 33, 52 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑂‘(𝑊‘𝐼)) ∈ ℕ) |
54 | 53 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (𝑂‘(𝑊‘𝐼)) ∈ ℕ) |
55 | | nndivre 11944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℝ ∧ (𝑂‘(𝑊‘𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℝ) |
56 | 45, 54, 55 | sylancr 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℝ) |
57 | 56 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℂ) |
58 | | cxpcl 25734 |
. . . . . . . . . . . . . . . . . 18
⊢ ((-1
∈ ℂ ∧ (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℂ) →
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) ∈ ℂ) |
59 | 44, 57, 58 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (-1↑𝑐(2 /
(𝑂‘(𝑊‘𝐼)))) ∈ ℂ) |
60 | 43, 59 | eqeltrid 2843 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → 𝑇 ∈ ℂ) |
61 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → -1 ∈
ℂ) |
62 | | neg1ne0 12019 |
. . . . . . . . . . . . . . . . . . 19
⊢ -1 ≠
0 |
63 | 62 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → -1 ≠ 0) |
64 | 61, 63, 57 | cxpne0d 25773 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (-1↑𝑐(2 /
(𝑂‘(𝑊‘𝐼)))) ≠ 0) |
65 | 43 | neeq1i 3007 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇 ≠ 0 ↔
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) ≠ 0) |
66 | 64, 65 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → 𝑇 ≠ 0) |
67 | | zsubcl 12292 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑚 − 𝑀) ∈ ℤ) |
68 | 67 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (𝑚 − 𝑀) ∈ ℤ) |
69 | 36 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → 𝑀 ∈ ℤ) |
70 | | expaddz 13755 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ ((𝑚 − 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑇↑((𝑚 − 𝑀) + 𝑀)) = ((𝑇↑(𝑚 − 𝑀)) · (𝑇↑𝑀))) |
71 | 60, 66, 68, 69, 70 | syl22anc 835 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (𝑇↑((𝑚 − 𝑀) + 𝑀)) = ((𝑇↑(𝑚 − 𝑀)) · (𝑇↑𝑀))) |
72 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → 𝑚 ∈ ℤ) |
73 | 72 | zcnd 12356 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → 𝑚 ∈ ℂ) |
74 | 69 | zcnd 12356 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → 𝑀 ∈ ℂ) |
75 | 73, 74 | npcand 11266 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → ((𝑚 − 𝑀) + 𝑀) = 𝑚) |
76 | 75 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (𝑇↑((𝑚 − 𝑀) + 𝑀)) = (𝑇↑𝑚)) |
77 | 43 | oveq1i 7265 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇↑(𝑚 − 𝑀)) = ((-1↑𝑐(2 /
(𝑂‘(𝑊‘𝐼))))↑(𝑚 − 𝑀)) |
78 | | root1eq1 25813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑂‘(𝑊‘𝐼)) ∈ ℕ ∧ (𝑚 − 𝑀) ∈ ℤ) →
(((-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼))))↑(𝑚 − 𝑀)) = 1 ↔ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀))) |
79 | 53, 67, 78 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) →
(((-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼))))↑(𝑚 − 𝑀)) = 1 ↔ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀))) |
80 | 79 | biimpar 477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → ((-1↑𝑐(2 /
(𝑂‘(𝑊‘𝐼))))↑(𝑚 − 𝑀)) = 1) |
81 | 77, 80 | syl5eq 2791 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (𝑇↑(𝑚 − 𝑀)) = 1) |
82 | 81 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → ((𝑇↑(𝑚 − 𝑀)) · (𝑇↑𝑀)) = (1 · (𝑇↑𝑀))) |
83 | 60, 66, 69 | expclzd 13797 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (𝑇↑𝑀) ∈ ℂ) |
84 | 83 | mulid2d 10924 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (1 · (𝑇↑𝑀)) = (𝑇↑𝑀)) |
85 | 82, 84 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → ((𝑇↑(𝑚 − 𝑀)) · (𝑇↑𝑀)) = (𝑇↑𝑀)) |
86 | 71, 76, 85 | 3eqtr3d 2786 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀)) → (𝑇↑𝑚) = (𝑇↑𝑀)) |
87 | 86 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊‘𝐼)) ∥ (𝑚 − 𝑀) → (𝑇↑𝑚) = (𝑇↑𝑀))) |
88 | 42, 87 | sylbird 259 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 · (𝑊‘𝐼)) = (𝑀 · (𝑊‘𝐼)) → (𝑇↑𝑚) = (𝑇↑𝑀))) |
89 | 14, 15, 16, 88 | syl12anc 833 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → ((𝑚 · (𝑊‘𝐼)) = (𝑀 · (𝑊‘𝐼)) → (𝑇↑𝑚) = (𝑇↑𝑀))) |
90 | 13, 89 | mpd 15 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → (𝑇↑𝑚) = (𝑇↑𝑀)) |
91 | 90 | eqeq2d 2749 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → (ℎ = (𝑇↑𝑚) ↔ ℎ = (𝑇↑𝑀))) |
92 | 91 | biimpd 228 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼))) → (ℎ = (𝑇↑𝑚) → ℎ = (𝑇↑𝑀))) |
93 | 92 | expimpd 453 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ 𝑚 ∈ ℤ) → ((((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)) → ℎ = (𝑇↑𝑀))) |
94 | 93 | rexlimdva 3212 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)) → ℎ = (𝑇↑𝑀))) |
95 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (𝑚 · (𝑊‘𝐼)) = (𝑀 · (𝑊‘𝐼))) |
96 | 95 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ↔ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) |
97 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (𝑇↑𝑚) = (𝑇↑𝑀)) |
98 | 97 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (ℎ = (𝑇↑𝑚) ↔ ℎ = (𝑇↑𝑀))) |
99 | 96, 98 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)) ↔ (((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑀)))) |
100 | 99 | rspcev 3552 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑀))) → ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚))) |
101 | 100 | expr 456 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼))) → (ℎ = (𝑇↑𝑀) → ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
102 | 101 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) → (ℎ = (𝑇↑𝑀) → ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
103 | 94, 102 | impbid 211 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)) ↔ ℎ = (𝑇↑𝑀))) |
104 | 103 | adantr 480 |
. . . 4
⊢ ((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ (𝑇↑𝑀) ∈ V) → (∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)) ↔ ℎ = (𝑇↑𝑀))) |
105 | 104 | iota5 6401 |
. . 3
⊢ ((((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) ∧ (𝑇↑𝑀) ∈ V) → (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚))) = (𝑇↑𝑀)) |
106 | 9, 105 | mpan2 687 |
. 2
⊢ (((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) → (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝐶) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚))) = (𝑇↑𝑀)) |
107 | 8, 106 | eqtrd 2778 |
1
⊢ (((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) → (𝑋‘𝐶) = (𝑇↑𝑀)) |