MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem1 Structured version   Visualization version   GIF version

Theorem dchrptlem1 27212
Description: Lemma for dchrpt 27215. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
dchrpt.p 𝑃 = (𝐻dProj𝑆)
dchrpt.o 𝑂 = (od‘𝐻)
dchrpt.t 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
dchrpt.i (𝜑𝐼 ∈ dom 𝑊)
dchrpt.4 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
dchrpt.5 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
Assertion
Ref Expression
dchrptlem1 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (𝑇𝑀))
Distinct variable groups:   ,𝑘,𝑚,𝑛, 1   𝑢,,𝐴,𝑘,𝑚,𝑛   ,𝐼,𝑘,𝑚,𝑢   𝐶,,𝑚,𝑢   ,𝐻,𝑘,𝑚,𝑛,𝑢   ,𝑊,𝑘,𝑚,𝑛,𝑢   · ,,𝑘,𝑚,𝑛,𝑢   𝑃,,𝑚,𝑢   𝑆,,𝑘,𝑚,𝑛,𝑢   ,𝑍,𝑘,𝑚,𝑛,𝑢   ,𝑀,𝑚   𝜑,,𝑘,𝑚,𝑛   𝑇,,𝑚,𝑢   𝑈,,𝑚,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐵(𝑢,,𝑘,𝑚,𝑛)   𝐶(𝑘,𝑛)   𝐷(𝑢,,𝑘,𝑚,𝑛)   𝑃(𝑘,𝑛)   𝑇(𝑘,𝑛)   𝑈(𝑘,𝑛)   1 (𝑢)   𝐺(𝑢,,𝑘,𝑚,𝑛)   𝐼(𝑛)   𝑀(𝑢,𝑘,𝑛)   𝑁(𝑢,,𝑘,𝑚,𝑛)   𝑂(𝑢,,𝑘,𝑚,𝑛)   𝑋(𝑢,,𝑘,𝑚,𝑛)

Proof of Theorem dchrptlem1
StepHypRef Expression
1 fveqeq2 6840 . . . . . . 7 (𝑢 = 𝐶 → (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))))
21anbi1d 631 . . . . . 6 (𝑢 = 𝐶 → ((((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
32rexbidv 3158 . . . . 5 (𝑢 = 𝐶 → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
43iotabidv 6473 . . . 4 (𝑢 = 𝐶 → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
5 dchrpt.5 . . . 4 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
6 iotaex 6465 . . . 4 (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) ∈ V
74, 5, 6fvmpt3i 6943 . . 3 (𝐶𝑈 → (𝑋𝐶) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
87ad2antlr 727 . 2 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
9 ovex 7388 . . 3 (𝑇𝑀) ∈ V
10 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)))
11 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))))
1211simprd 495 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))
1310, 12eqtr3d 2770 . . . . . . . . . . 11 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)))
14 simp-4l 782 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝜑)
15 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝑚 ∈ ℤ)
1611simpld 494 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝑀 ∈ ℤ)
17 dchrpt.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
1817nnnn0d 12452 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
19 dchrpt.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ/nℤ‘𝑁)
2019zncrng 21491 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
21 crngring 20173 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
22 dchrpt.u . . . . . . . . . . . . . . . . 17 𝑈 = (Unit‘𝑍)
23 dchrpt.h . . . . . . . . . . . . . . . . 17 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
2422, 23unitgrp 20311 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
2518, 20, 21, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑𝐻 ∈ Grp)
2625adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐻 ∈ Grp)
27 dchrpt.w . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝑈)
28 wrdf 14435 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑈𝑊:(0..^(♯‘𝑊))⟶𝑈)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑈)
30 dchrpt.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ dom 𝑊)
3129fdmd 6669 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3230, 31eleqtrd 2835 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
3329, 32ffvelcdmd 7027 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊𝐼) ∈ 𝑈)
3433adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊𝐼) ∈ 𝑈)
35 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑚 ∈ ℤ)
36 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ)
3722, 23unitgrpbas 20310 . . . . . . . . . . . . . . 15 𝑈 = (Base‘𝐻)
38 dchrpt.o . . . . . . . . . . . . . . 15 𝑂 = (od‘𝐻)
39 dchrpt.m . . . . . . . . . . . . . . 15 · = (.g𝐻)
40 eqid 2733 . . . . . . . . . . . . . . 15 (0g𝐻) = (0g𝐻)
4137, 38, 39, 40odcong 19471 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝑊𝐼) ∈ 𝑈 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) ↔ (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼))))
4226, 34, 35, 36, 41syl112anc 1376 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) ↔ (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼))))
43 dchrpt.t . . . . . . . . . . . . . . . . 17 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
44 neg1cn 12120 . . . . . . . . . . . . . . . . . 18 -1 ∈ ℂ
45 2re 12209 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
46 dchrpt.b . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐵 = (Base‘𝑍)
4719, 46znfi 21506 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
4817, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ Fin)
4946, 22unitss 20304 . . . . . . . . . . . . . . . . . . . . . . 23 𝑈𝐵
50 ssfi 9092 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
5148, 49, 50sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑈 ∈ Fin)
5237, 38odcl2 19487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊𝐼) ∈ 𝑈) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
5325, 51, 33, 52syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑂‘(𝑊𝐼)) ∈ ℕ)
5453ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
55 nndivre 12176 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ (𝑂‘(𝑊𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
5645, 54, 55sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
5756recnd 11150 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ)
58 cxpcl 26620 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
5944, 57, 58sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
6043, 59eqeltrid 2837 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑇 ∈ ℂ)
6144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → -1 ∈ ℂ)
62 neg1ne0 12122 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
6362a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → -1 ≠ 0)
6461, 63, 57cxpne0d 26659 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
6543neeq1i 2994 . . . . . . . . . . . . . . . . 17 (𝑇 ≠ 0 ↔ (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
6664, 65sylibr 234 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑇 ≠ 0)
67 zsubcl 12524 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑚𝑀) ∈ ℤ)
6867ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑚𝑀) ∈ ℤ)
6936adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑀 ∈ ℤ)
70 expaddz 14023 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ ((𝑚𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑇↑((𝑚𝑀) + 𝑀)) = ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)))
7160, 66, 68, 69, 70syl22anc 838 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑((𝑚𝑀) + 𝑀)) = ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)))
7235adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑚 ∈ ℤ)
7372zcnd 12588 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑚 ∈ ℂ)
7469zcnd 12588 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑀 ∈ ℂ)
7573, 74npcand 11486 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑚𝑀) + 𝑀) = 𝑚)
7675oveq2d 7371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑((𝑚𝑀) + 𝑀)) = (𝑇𝑚))
7743oveq1i 7365 . . . . . . . . . . . . . . . . . 18 (𝑇↑(𝑚𝑀)) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀))
78 root1eq1 26702 . . . . . . . . . . . . . . . . . . . 20 (((𝑂‘(𝑊𝐼)) ∈ ℕ ∧ (𝑚𝑀) ∈ ℤ) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)))
7953, 67, 78syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)))
8079biimpar 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1)
8177, 80eqtrid 2780 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑(𝑚𝑀)) = 1)
8281oveq1d 7370 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)) = (1 · (𝑇𝑀)))
8360, 66, 69expclzd 14068 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇𝑀) ∈ ℂ)
8483mullidd 11140 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (1 · (𝑇𝑀)) = (𝑇𝑀))
8582, 84eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)) = (𝑇𝑀))
8671, 76, 853eqtr3d 2776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇𝑚) = (𝑇𝑀))
8786ex 412 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) → (𝑇𝑚) = (𝑇𝑀)))
8842, 87sylbird 260 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)) → (𝑇𝑚) = (𝑇𝑀)))
8914, 15, 16, 88syl12anc 836 . . . . . . . . . . 11 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)) → (𝑇𝑚) = (𝑇𝑀)))
9013, 89mpd 15 . . . . . . . . . 10 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑇𝑚) = (𝑇𝑀))
9190eqeq2d 2744 . . . . . . . . 9 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ( = (𝑇𝑚) ↔ = (𝑇𝑀)))
9291biimpd 229 . . . . . . . 8 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ( = (𝑇𝑚) → = (𝑇𝑀)))
9392expimpd 453 . . . . . . 7 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) → ((((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) → = (𝑇𝑀)))
9493rexlimdva 3135 . . . . . 6 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) → = (𝑇𝑀)))
95 oveq1 7362 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)))
9695eqeq2d 2744 . . . . . . . . . 10 (𝑚 = 𝑀 → (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))))
97 oveq2 7363 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑇𝑚) = (𝑇𝑀))
9897eqeq2d 2744 . . . . . . . . . 10 (𝑚 = 𝑀 → ( = (𝑇𝑚) ↔ = (𝑇𝑀)))
9996, 98anbi12d 632 . . . . . . . . 9 (𝑚 = 𝑀 → ((((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ (((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)) ∧ = (𝑇𝑀))))
10099rspcev 3574 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)) ∧ = (𝑇𝑀))) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)))
101100expr 456 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))) → ( = (𝑇𝑀) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
102101adantl 481 . . . . . 6 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → ( = (𝑇𝑀) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
10394, 102impbid 212 . . . . 5 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ = (𝑇𝑀)))
104103adantr 480 . . . 4 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ (𝑇𝑀) ∈ V) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ = (𝑇𝑀)))
105104iota5 6472 . . 3 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ (𝑇𝑀) ∈ V) → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (𝑇𝑀))
1069, 105mpan2 691 . 2 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (𝑇𝑀))
1078, 106eqtrd 2768 1 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (𝑇𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  wrex 3058  Vcvv 3438  wss 3899   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622  cio 6443  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8878  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  cmin 11354  -cneg 11355   / cdiv 11784  cn 12135  2c2 12190  0cn0 12391  cz 12478  ..^cfzo 13564  cexp 13978  chash 14247  Word cword 14430  cdvds 16173  Basecbs 17130  s cress 17151  0gc0g 17353  Grpcgrp 18856  .gcmg 18990  odcod 19446   DProd cdprd 19917  dProjcdpj 19918  mulGrpcmgp 20068  1rcur 20109  Ringcrg 20161  CRingccrg 20162  Unitcui 20283  ℤ/nczn 21449  𝑐ccxp 26501  DChrcdchr 27180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-word 14431  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-dvds 16174  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-qus 17423  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-nsg 19047  df-eqg 19048  df-ghm 19135  df-cntz 19239  df-od 19450  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-rhm 20400  df-subrng 20471  df-subrg 20495  df-lmod 20805  df-lss 20875  df-lsp 20915  df-sra 21117  df-rgmod 21118  df-lidl 21155  df-rsp 21156  df-2idl 21197  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-zring 21394  df-zrh 21450  df-zn 21453  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-log 26502  df-cxp 26503
This theorem is referenced by:  dchrptlem2  27213
  Copyright terms: Public domain W3C validator