MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem1 Structured version   Visualization version   GIF version

Theorem dchrptlem1 27195
Description: Lemma for dchrpt 27198. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
dchrpt.p 𝑃 = (𝐻dProj𝑆)
dchrpt.o 𝑂 = (od‘𝐻)
dchrpt.t 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
dchrpt.i (𝜑𝐼 ∈ dom 𝑊)
dchrpt.4 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
dchrpt.5 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
Assertion
Ref Expression
dchrptlem1 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (𝑇𝑀))
Distinct variable groups:   ,𝑘,𝑚,𝑛, 1   𝑢,,𝐴,𝑘,𝑚,𝑛   ,𝐼,𝑘,𝑚,𝑢   𝐶,,𝑚,𝑢   ,𝐻,𝑘,𝑚,𝑛,𝑢   ,𝑊,𝑘,𝑚,𝑛,𝑢   · ,,𝑘,𝑚,𝑛,𝑢   𝑃,,𝑚,𝑢   𝑆,,𝑘,𝑚,𝑛,𝑢   ,𝑍,𝑘,𝑚,𝑛,𝑢   ,𝑀,𝑚   𝜑,,𝑘,𝑚,𝑛   𝑇,,𝑚,𝑢   𝑈,,𝑚,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐵(𝑢,,𝑘,𝑚,𝑛)   𝐶(𝑘,𝑛)   𝐷(𝑢,,𝑘,𝑚,𝑛)   𝑃(𝑘,𝑛)   𝑇(𝑘,𝑛)   𝑈(𝑘,𝑛)   1 (𝑢)   𝐺(𝑢,,𝑘,𝑚,𝑛)   𝐼(𝑛)   𝑀(𝑢,𝑘,𝑛)   𝑁(𝑢,,𝑘,𝑚,𝑛)   𝑂(𝑢,,𝑘,𝑚,𝑛)   𝑋(𝑢,,𝑘,𝑚,𝑛)

Proof of Theorem dchrptlem1
StepHypRef Expression
1 fveqeq2 6826 . . . . . . 7 (𝑢 = 𝐶 → (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))))
21anbi1d 631 . . . . . 6 (𝑢 = 𝐶 → ((((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
32rexbidv 3154 . . . . 5 (𝑢 = 𝐶 → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
43iotabidv 6461 . . . 4 (𝑢 = 𝐶 → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
5 dchrpt.5 . . . 4 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
6 iotaex 6453 . . . 4 (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) ∈ V
74, 5, 6fvmpt3i 6929 . . 3 (𝐶𝑈 → (𝑋𝐶) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
87ad2antlr 727 . 2 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
9 ovex 7374 . . 3 (𝑇𝑀) ∈ V
10 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)))
11 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))))
1211simprd 495 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))
1310, 12eqtr3d 2767 . . . . . . . . . . 11 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)))
14 simp-4l 782 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝜑)
15 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝑚 ∈ ℤ)
1611simpld 494 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝑀 ∈ ℤ)
17 dchrpt.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
1817nnnn0d 12434 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
19 dchrpt.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ/nℤ‘𝑁)
2019zncrng 21474 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
21 crngring 20156 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
22 dchrpt.u . . . . . . . . . . . . . . . . 17 𝑈 = (Unit‘𝑍)
23 dchrpt.h . . . . . . . . . . . . . . . . 17 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
2422, 23unitgrp 20294 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
2518, 20, 21, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑𝐻 ∈ Grp)
2625adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐻 ∈ Grp)
27 dchrpt.w . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝑈)
28 wrdf 14417 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑈𝑊:(0..^(♯‘𝑊))⟶𝑈)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑈)
30 dchrpt.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ dom 𝑊)
3129fdmd 6657 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3230, 31eleqtrd 2831 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
3329, 32ffvelcdmd 7013 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊𝐼) ∈ 𝑈)
3433adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊𝐼) ∈ 𝑈)
35 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑚 ∈ ℤ)
36 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ)
3722, 23unitgrpbas 20293 . . . . . . . . . . . . . . 15 𝑈 = (Base‘𝐻)
38 dchrpt.o . . . . . . . . . . . . . . 15 𝑂 = (od‘𝐻)
39 dchrpt.m . . . . . . . . . . . . . . 15 · = (.g𝐻)
40 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝐻) = (0g𝐻)
4137, 38, 39, 40odcong 19454 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝑊𝐼) ∈ 𝑈 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) ↔ (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼))))
4226, 34, 35, 36, 41syl112anc 1376 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) ↔ (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼))))
43 dchrpt.t . . . . . . . . . . . . . . . . 17 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
44 neg1cn 12102 . . . . . . . . . . . . . . . . . 18 -1 ∈ ℂ
45 2re 12191 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
46 dchrpt.b . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐵 = (Base‘𝑍)
4719, 46znfi 21489 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
4817, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ Fin)
4946, 22unitss 20287 . . . . . . . . . . . . . . . . . . . . . . 23 𝑈𝐵
50 ssfi 9077 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
5148, 49, 50sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑈 ∈ Fin)
5237, 38odcl2 19470 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊𝐼) ∈ 𝑈) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
5325, 51, 33, 52syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑂‘(𝑊𝐼)) ∈ ℕ)
5453ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
55 nndivre 12158 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ (𝑂‘(𝑊𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
5645, 54, 55sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
5756recnd 11132 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ)
58 cxpcl 26603 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
5944, 57, 58sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
6043, 59eqeltrid 2833 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑇 ∈ ℂ)
6144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → -1 ∈ ℂ)
62 neg1ne0 12104 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
6362a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → -1 ≠ 0)
6461, 63, 57cxpne0d 26642 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
6543neeq1i 2990 . . . . . . . . . . . . . . . . 17 (𝑇 ≠ 0 ↔ (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
6664, 65sylibr 234 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑇 ≠ 0)
67 zsubcl 12506 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑚𝑀) ∈ ℤ)
6867ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑚𝑀) ∈ ℤ)
6936adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑀 ∈ ℤ)
70 expaddz 14005 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ ((𝑚𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑇↑((𝑚𝑀) + 𝑀)) = ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)))
7160, 66, 68, 69, 70syl22anc 838 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑((𝑚𝑀) + 𝑀)) = ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)))
7235adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑚 ∈ ℤ)
7372zcnd 12570 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑚 ∈ ℂ)
7469zcnd 12570 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑀 ∈ ℂ)
7573, 74npcand 11468 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑚𝑀) + 𝑀) = 𝑚)
7675oveq2d 7357 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑((𝑚𝑀) + 𝑀)) = (𝑇𝑚))
7743oveq1i 7351 . . . . . . . . . . . . . . . . . 18 (𝑇↑(𝑚𝑀)) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀))
78 root1eq1 26685 . . . . . . . . . . . . . . . . . . . 20 (((𝑂‘(𝑊𝐼)) ∈ ℕ ∧ (𝑚𝑀) ∈ ℤ) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)))
7953, 67, 78syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)))
8079biimpar 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1)
8177, 80eqtrid 2777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑(𝑚𝑀)) = 1)
8281oveq1d 7356 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)) = (1 · (𝑇𝑀)))
8360, 66, 69expclzd 14050 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇𝑀) ∈ ℂ)
8483mullidd 11122 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (1 · (𝑇𝑀)) = (𝑇𝑀))
8582, 84eqtrd 2765 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)) = (𝑇𝑀))
8671, 76, 853eqtr3d 2773 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇𝑚) = (𝑇𝑀))
8786ex 412 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) → (𝑇𝑚) = (𝑇𝑀)))
8842, 87sylbird 260 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)) → (𝑇𝑚) = (𝑇𝑀)))
8914, 15, 16, 88syl12anc 836 . . . . . . . . . . 11 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)) → (𝑇𝑚) = (𝑇𝑀)))
9013, 89mpd 15 . . . . . . . . . 10 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑇𝑚) = (𝑇𝑀))
9190eqeq2d 2741 . . . . . . . . 9 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ( = (𝑇𝑚) ↔ = (𝑇𝑀)))
9291biimpd 229 . . . . . . . 8 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ( = (𝑇𝑚) → = (𝑇𝑀)))
9392expimpd 453 . . . . . . 7 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) → ((((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) → = (𝑇𝑀)))
9493rexlimdva 3131 . . . . . 6 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) → = (𝑇𝑀)))
95 oveq1 7348 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)))
9695eqeq2d 2741 . . . . . . . . . 10 (𝑚 = 𝑀 → (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))))
97 oveq2 7349 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑇𝑚) = (𝑇𝑀))
9897eqeq2d 2741 . . . . . . . . . 10 (𝑚 = 𝑀 → ( = (𝑇𝑚) ↔ = (𝑇𝑀)))
9996, 98anbi12d 632 . . . . . . . . 9 (𝑚 = 𝑀 → ((((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ (((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)) ∧ = (𝑇𝑀))))
10099rspcev 3575 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)) ∧ = (𝑇𝑀))) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)))
101100expr 456 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))) → ( = (𝑇𝑀) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
102101adantl 481 . . . . . 6 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → ( = (𝑇𝑀) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
10394, 102impbid 212 . . . . 5 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ = (𝑇𝑀)))
104103adantr 480 . . . 4 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ (𝑇𝑀) ∈ V) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ = (𝑇𝑀)))
105104iota5 6460 . . 3 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ (𝑇𝑀) ∈ V) → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (𝑇𝑀))
1069, 105mpan2 691 . 2 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (𝑇𝑀))
1078, 106eqtrd 2765 1 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (𝑇𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wrex 3054  Vcvv 3434  wss 3900   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cio 6431  wf 6473  cfv 6477  (class class class)co 7341  Fincfn 8864  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  cmin 11336  -cneg 11337   / cdiv 11766  cn 12117  2c2 12172  0cn0 12373  cz 12460  ..^cfzo 13546  cexp 13960  chash 14229  Word cword 14412  cdvds 16155  Basecbs 17112  s cress 17133  0gc0g 17335  Grpcgrp 18838  .gcmg 18972  odcod 19429   DProd cdprd 19900  dProjcdpj 19901  mulGrpcmgp 20051  1rcur 20092  Ringcrg 20144  CRingccrg 20145  Unitcui 20266  ℤ/nczn 21432  𝑐ccxp 26484  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-word 14413  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-dvds 16156  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-qus 17405  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-cntz 19222  df-od 19433  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486
This theorem is referenced by:  dchrptlem2  27196
  Copyright terms: Public domain W3C validator