MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem1 Structured version   Visualization version   GIF version

Theorem dchrptlem1 27308
Description: Lemma for dchrpt 27311. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
dchrpt.p 𝑃 = (𝐻dProj𝑆)
dchrpt.o 𝑂 = (od‘𝐻)
dchrpt.t 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
dchrpt.i (𝜑𝐼 ∈ dom 𝑊)
dchrpt.4 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
dchrpt.5 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
Assertion
Ref Expression
dchrptlem1 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (𝑇𝑀))
Distinct variable groups:   ,𝑘,𝑚,𝑛, 1   𝑢,,𝐴,𝑘,𝑚,𝑛   ,𝐼,𝑘,𝑚,𝑢   𝐶,,𝑚,𝑢   ,𝐻,𝑘,𝑚,𝑛,𝑢   ,𝑊,𝑘,𝑚,𝑛,𝑢   · ,,𝑘,𝑚,𝑛,𝑢   𝑃,,𝑚,𝑢   𝑆,,𝑘,𝑚,𝑛,𝑢   ,𝑍,𝑘,𝑚,𝑛,𝑢   ,𝑀,𝑚   𝜑,,𝑘,𝑚,𝑛   𝑇,,𝑚,𝑢   𝑈,,𝑚,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐵(𝑢,,𝑘,𝑚,𝑛)   𝐶(𝑘,𝑛)   𝐷(𝑢,,𝑘,𝑚,𝑛)   𝑃(𝑘,𝑛)   𝑇(𝑘,𝑛)   𝑈(𝑘,𝑛)   1 (𝑢)   𝐺(𝑢,,𝑘,𝑚,𝑛)   𝐼(𝑛)   𝑀(𝑢,𝑘,𝑛)   𝑁(𝑢,,𝑘,𝑚,𝑛)   𝑂(𝑢,,𝑘,𝑚,𝑛)   𝑋(𝑢,,𝑘,𝑚,𝑛)

Proof of Theorem dchrptlem1
StepHypRef Expression
1 fveqeq2 6915 . . . . . . 7 (𝑢 = 𝐶 → (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))))
21anbi1d 631 . . . . . 6 (𝑢 = 𝐶 → ((((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
32rexbidv 3179 . . . . 5 (𝑢 = 𝐶 → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
43iotabidv 6545 . . . 4 (𝑢 = 𝐶 → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
5 dchrpt.5 . . . 4 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
6 iotaex 6534 . . . 4 (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) ∈ V
74, 5, 6fvmpt3i 7021 . . 3 (𝐶𝑈 → (𝑋𝐶) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
87ad2antlr 727 . 2 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
9 ovex 7464 . . 3 (𝑇𝑀) ∈ V
10 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)))
11 simpllr 776 . . . . . . . . . . . . 13 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))))
1211simprd 495 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))
1310, 12eqtr3d 2779 . . . . . . . . . . 11 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)))
14 simp-4l 783 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝜑)
15 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝑚 ∈ ℤ)
1611simpld 494 . . . . . . . . . . . 12 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → 𝑀 ∈ ℤ)
17 dchrpt.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
1817nnnn0d 12587 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
19 dchrpt.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ/nℤ‘𝑁)
2019zncrng 21563 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
21 crngring 20242 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
22 dchrpt.u . . . . . . . . . . . . . . . . 17 𝑈 = (Unit‘𝑍)
23 dchrpt.h . . . . . . . . . . . . . . . . 17 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
2422, 23unitgrp 20383 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
2518, 20, 21, 244syl 19 . . . . . . . . . . . . . . 15 (𝜑𝐻 ∈ Grp)
2625adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐻 ∈ Grp)
27 dchrpt.w . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝑈)
28 wrdf 14557 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑈𝑊:(0..^(♯‘𝑊))⟶𝑈)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑈)
30 dchrpt.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ dom 𝑊)
3129fdmd 6746 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3230, 31eleqtrd 2843 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
3329, 32ffvelcdmd 7105 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊𝐼) ∈ 𝑈)
3433adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊𝐼) ∈ 𝑈)
35 simprl 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑚 ∈ ℤ)
36 simprr 773 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ)
3722, 23unitgrpbas 20382 . . . . . . . . . . . . . . 15 𝑈 = (Base‘𝐻)
38 dchrpt.o . . . . . . . . . . . . . . 15 𝑂 = (od‘𝐻)
39 dchrpt.m . . . . . . . . . . . . . . 15 · = (.g𝐻)
40 eqid 2737 . . . . . . . . . . . . . . 15 (0g𝐻) = (0g𝐻)
4137, 38, 39, 40odcong 19567 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝑊𝐼) ∈ 𝑈 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) ↔ (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼))))
4226, 34, 35, 36, 41syl112anc 1376 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) ↔ (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼))))
43 dchrpt.t . . . . . . . . . . . . . . . . 17 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
44 neg1cn 12380 . . . . . . . . . . . . . . . . . 18 -1 ∈ ℂ
45 2re 12340 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
46 dchrpt.b . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐵 = (Base‘𝑍)
4719, 46znfi 21578 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
4817, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ Fin)
4946, 22unitss 20376 . . . . . . . . . . . . . . . . . . . . . . 23 𝑈𝐵
50 ssfi 9213 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
5148, 49, 50sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑈 ∈ Fin)
5237, 38odcl2 19583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊𝐼) ∈ 𝑈) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
5325, 51, 33, 52syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑂‘(𝑊𝐼)) ∈ ℕ)
5453ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
55 nndivre 12307 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ (𝑂‘(𝑊𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
5645, 54, 55sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
5756recnd 11289 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ)
58 cxpcl 26716 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
5944, 57, 58sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
6043, 59eqeltrid 2845 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑇 ∈ ℂ)
6144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → -1 ∈ ℂ)
62 neg1ne0 12382 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
6362a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → -1 ≠ 0)
6461, 63, 57cxpne0d 26755 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
6543neeq1i 3005 . . . . . . . . . . . . . . . . 17 (𝑇 ≠ 0 ↔ (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
6664, 65sylibr 234 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑇 ≠ 0)
67 zsubcl 12659 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑚𝑀) ∈ ℤ)
6867ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑚𝑀) ∈ ℤ)
6936adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑀 ∈ ℤ)
70 expaddz 14147 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ ((𝑚𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑇↑((𝑚𝑀) + 𝑀)) = ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)))
7160, 66, 68, 69, 70syl22anc 839 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑((𝑚𝑀) + 𝑀)) = ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)))
7235adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑚 ∈ ℤ)
7372zcnd 12723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑚 ∈ ℂ)
7469zcnd 12723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → 𝑀 ∈ ℂ)
7573, 74npcand 11624 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑚𝑀) + 𝑀) = 𝑚)
7675oveq2d 7447 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑((𝑚𝑀) + 𝑀)) = (𝑇𝑚))
7743oveq1i 7441 . . . . . . . . . . . . . . . . . 18 (𝑇↑(𝑚𝑀)) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀))
78 root1eq1 26798 . . . . . . . . . . . . . . . . . . . 20 (((𝑂‘(𝑊𝐼)) ∈ ℕ ∧ (𝑚𝑀) ∈ ℤ) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)))
7953, 67, 78syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)))
8079biimpar 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑(𝑚𝑀)) = 1)
8177, 80eqtrid 2789 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇↑(𝑚𝑀)) = 1)
8281oveq1d 7446 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)) = (1 · (𝑇𝑀)))
8360, 66, 69expclzd 14191 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇𝑀) ∈ ℂ)
8483mullidd 11279 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (1 · (𝑇𝑀)) = (𝑇𝑀))
8582, 84eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → ((𝑇↑(𝑚𝑀)) · (𝑇𝑀)) = (𝑇𝑀))
8671, 76, 853eqtr3d 2785 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀)) → (𝑇𝑚) = (𝑇𝑀))
8786ex 412 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑂‘(𝑊𝐼)) ∥ (𝑚𝑀) → (𝑇𝑚) = (𝑇𝑀)))
8842, 87sylbird 260 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)) → (𝑇𝑚) = (𝑇𝑀)))
8914, 15, 16, 88syl12anc 837 . . . . . . . . . . 11 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ((𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)) → (𝑇𝑚) = (𝑇𝑀)))
9013, 89mpd 15 . . . . . . . . . 10 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → (𝑇𝑚) = (𝑇𝑀))
9190eqeq2d 2748 . . . . . . . . 9 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ( = (𝑇𝑚) ↔ = (𝑇𝑀)))
9291biimpd 229 . . . . . . . 8 (((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) ∧ ((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼))) → ( = (𝑇𝑚) → = (𝑇𝑀)))
9392expimpd 453 . . . . . . 7 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ 𝑚 ∈ ℤ) → ((((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) → = (𝑇𝑀)))
9493rexlimdva 3155 . . . . . 6 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) → = (𝑇𝑀)))
95 oveq1 7438 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑚 · (𝑊𝐼)) = (𝑀 · (𝑊𝐼)))
9695eqeq2d 2748 . . . . . . . . . 10 (𝑚 = 𝑀 → (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))))
97 oveq2 7439 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑇𝑚) = (𝑇𝑀))
9897eqeq2d 2748 . . . . . . . . . 10 (𝑚 = 𝑀 → ( = (𝑇𝑚) ↔ = (𝑇𝑀)))
9996, 98anbi12d 632 . . . . . . . . 9 (𝑚 = 𝑀 → ((((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ (((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)) ∧ = (𝑇𝑀))))
10099rspcev 3622 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)) ∧ = (𝑇𝑀))) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)))
101100expr 456 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼))) → ( = (𝑇𝑀) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
102101adantl 481 . . . . . 6 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → ( = (𝑇𝑀) → ∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
10394, 102impbid 212 . . . . 5 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ = (𝑇𝑀)))
104103adantr 480 . . . 4 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ (𝑇𝑀) ∈ V) → (∃𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚)) ↔ = (𝑇𝑀)))
105104iota5 6544 . . 3 ((((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) ∧ (𝑇𝑀) ∈ V) → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (𝑇𝑀))
1069, 105mpan2 691 . 2 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝐶) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))) = (𝑇𝑀))
1078, 106eqtrd 2777 1 (((𝜑𝐶𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃𝐼)‘𝐶) = (𝑀 · (𝑊𝐼)))) → (𝑋𝐶) = (𝑇𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  cio 6512  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  ..^cfzo 13694  cexp 14102  chash 14369  Word cword 14552  cdvds 16290  Basecbs 17247  s cress 17274  0gc0g 17484  Grpcgrp 18951  .gcmg 19085  odcod 19542   DProd cdprd 20013  dProjcdpj 20014  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  Unitcui 20355  ℤ/nczn 21513  𝑐ccxp 26597  DChrcdchr 27276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-word 14553  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-qus 17554  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  dchrptlem2  27309
  Copyright terms: Public domain W3C validator