MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2a Structured version   Visualization version   GIF version

Theorem gsumval2a 18698
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
gsumval2a.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
gsumval2a.f (𝜑 → ¬ ran 𝐹𝑂)
Assertion
Ref Expression
gsumval2a (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝑉   𝑥, + ,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem gsumval2a
Dummy variables 𝑧 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2737 . . . 4 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . . 4 + = (+g𝐺)
4 gsumval2a.o . . . 4 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 eqidd 2738 . . . 4 (𝜑 → (𝐹 “ (V ∖ 𝑂)) = (𝐹 “ (V ∖ 𝑂)))
6 gsumval2.g . . . 4 (𝜑𝐺𝑉)
7 ovexd 7466 . . . 4 (𝜑 → (𝑀...𝑁) ∈ V)
8 gsumval2.f . . . 4 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
91, 2, 3, 4, 5, 6, 7, 8gsumval 18690 . . 3 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))))
10 gsumval2a.f . . . . 5 (𝜑 → ¬ ran 𝐹𝑂)
1110iffalsed 4536 . . . 4 (𝜑 → if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂))))))))
12 fzf 13551 . . . . . . 7 ...:(ℤ × ℤ)⟶𝒫 ℤ
13 ffn 6736 . . . . . . 7 (...:(ℤ × ℤ)⟶𝒫 ℤ → ... Fn (ℤ × ℤ))
1412, 13ax-mp 5 . . . . . 6 ... Fn (ℤ × ℤ)
15 gsumval2.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
16 eluzel2 12883 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1715, 16syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
18 eluzelz 12888 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1915, 18syl 17 . . . . . 6 (𝜑𝑁 ∈ ℤ)
20 fnovrn 7608 . . . . . 6 ((... Fn (ℤ × ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ ran ...)
2114, 17, 19, 20mp3an2i 1468 . . . . 5 (𝜑 → (𝑀...𝑁) ∈ ran ...)
2221iftrued 4533 . . . 4 (𝜑 → if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂))))))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
2311, 22eqtrd 2777 . . 3 (𝜑 → if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
249, 23eqtrd 2777 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
25 fvex 6919 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
26 fzopth 13601 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀 = 𝑚𝑁 = 𝑛)))
2715, 26syl 17 . . . . . . . . . 10 (𝜑 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀 = 𝑚𝑁 = 𝑛)))
28 simpl 482 . . . . . . . . . . . . . 14 ((𝑀 = 𝑚𝑁 = 𝑛) → 𝑀 = 𝑚)
2928seqeq1d 14048 . . . . . . . . . . . . 13 ((𝑀 = 𝑚𝑁 = 𝑛) → seq𝑀( + , 𝐹) = seq𝑚( + , 𝐹))
30 simpr 484 . . . . . . . . . . . . 13 ((𝑀 = 𝑚𝑁 = 𝑛) → 𝑁 = 𝑛)
3129, 30fveq12d 6913 . . . . . . . . . . . 12 ((𝑀 = 𝑚𝑁 = 𝑛) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑚( + , 𝐹)‘𝑛))
3231eqcomd 2743 . . . . . . . . . . 11 ((𝑀 = 𝑚𝑁 = 𝑛) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
33 eqeq1 2741 . . . . . . . . . . 11 (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → (𝑧 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)))
3432, 33syl5ibrcom 247 . . . . . . . . . 10 ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3527, 34biimtrdi 253 . . . . . . . . 9 (𝜑 → ((𝑀...𝑁) = (𝑚...𝑛) → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁))))
3635impd 410 . . . . . . . 8 (𝜑 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3736rexlimdvw 3160 . . . . . . 7 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3837exlimdv 1933 . . . . . 6 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3917adantr 480 . . . . . . . 8 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ ℤ)
40 oveq2 7439 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
4140eqcomd 2743 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑀...𝑁) = (𝑀...𝑛))
4241biantrurd 532 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑛) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
43 fveq2 6906 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
4443eqeq2d 2748 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4542, 44bitr3d 281 . . . . . . . . . 10 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4645rspcev 3622 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
4715, 46sylan 580 . . . . . . . 8 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
48 fveq2 6906 . . . . . . . . . 10 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
49 oveq1 7438 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
5049eqeq2d 2748 . . . . . . . . . . 11 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
51 seqeq1 14045 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
5251fveq1d 6908 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
5352eqeq2d 2748 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
5450, 53anbi12d 632 . . . . . . . . . 10 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
5548, 54rexeqbidv 3347 . . . . . . . . 9 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
5655spcegv 3597 . . . . . . . 8 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
5739, 47, 56sylc 65 . . . . . . 7 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))
5857ex 412 . . . . . 6 (𝜑 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
5938, 58impbid 212 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
6059adantr 480 . . . 4 ((𝜑 ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
6160iota5 6544 . . 3 ((𝜑 ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (seq𝑀( + , 𝐹)‘𝑁))
6225, 61mpan2 691 . 2 (𝜑 → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (seq𝑀( + , 𝐹)‘𝑁))
6324, 62eqtrd 2777 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  ifcif 4525  𝒫 cpw 4600   × cxp 5683  ccnv 5684  ran crn 5686  cima 5688  ccom 5689  cio 6512   Fn wfn 6556  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  1c1 11156  cz 12613  cuz 12878  ...cfz 13547  seqcseq 14042  chash 14369  Basecbs 17247  +gcplusg 17297  0gc0g 17484   Σg cgsu 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-gsum 17487
This theorem is referenced by:  gsumval2  18699
  Copyright terms: Public domain W3C validator