MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpidmnd Structured version   Visualization version   GIF version

Theorem sgrpidmnd 18649
Description: A semigroup with an identity element which is not the empty set is a monoid. Of course there could be monoids with the empty set as identity element (see, for example, the monoid of the power set of a class under union, pwmnd 18847 and pwmndid 18846), but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b 𝐵 = (Base‘𝐺)
sgrpidmnd.0 0 = (0g𝐺)
Assertion
Ref Expression
sgrpidmnd ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd)
Distinct variable groups:   𝐵,𝑒   𝑒,𝐺
Allowed substitution hint:   0 (𝑒)

Proof of Theorem sgrpidmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpidmnd.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
2 eqid 2733 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3 sgrpidmnd.0 . . . . . . . . . 10 0 = (0g𝐺)
41, 2, 3grpidval 18571 . . . . . . . . 9 0 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))
54eqeq2i 2746 . . . . . . . 8 (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
6 eleq1w 2816 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → (𝑦𝐵𝑒𝐵))
7 oveq1 7359 . . . . . . . . . . . . . . 15 (𝑦 = 𝑒 → (𝑦(+g𝐺)𝑥) = (𝑒(+g𝐺)𝑥))
87eqeq1d 2735 . . . . . . . . . . . . . 14 (𝑦 = 𝑒 → ((𝑦(+g𝐺)𝑥) = 𝑥 ↔ (𝑒(+g𝐺)𝑥) = 𝑥))
98ovanraleqv 7376 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → (∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
106, 9anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑒 → ((𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1110iotan0 6476 . . . . . . . . . . 11 ((𝑒𝐵𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
12 rsp 3221 . . . . . . . . . . 11 (∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1311, 12simpl2im 503 . . . . . . . . . 10 ((𝑒𝐵𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
14133expb 1120 . . . . . . . . 9 ((𝑒𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1514expcom 413 . . . . . . . 8 ((𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
165, 15sylan2b 594 . . . . . . 7 ((𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → (𝑒𝐵 → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1716impcom 407 . . . . . 6 ((𝑒𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1817ralrimiv 3124 . . . . 5 ((𝑒𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
1918ex 412 . . . 4 (𝑒𝐵 → ((𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2019reximia 3068 . . 3 (∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2120anim2i 617 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
221, 2ismnddef 18646 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2321, 22sylibr 234 1 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  c0 4282  cio 6440  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Smgrpcsgrp 18628  Mndcmnd 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-0g 17347  df-mnd 18645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator