Step | Hyp | Ref
| Expression |
1 | | sgrpidmnd.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐺) |
2 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
3 | | sgrpidmnd.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐺) |
4 | 1, 2, 3 | grpidval 18345 |
. . . . . . . . 9
⊢ 0 =
(℩𝑦(𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥))) |
5 | 4 | eqeq2i 2751 |
. . . . . . . 8
⊢ (𝑒 = 0 ↔ 𝑒 = (℩𝑦(𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥)))) |
6 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑒 → (𝑦 ∈ 𝐵 ↔ 𝑒 ∈ 𝐵)) |
7 | | oveq1 7282 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑒 → (𝑦(+g‘𝐺)𝑥) = (𝑒(+g‘𝐺)𝑥)) |
8 | 7 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑒 → ((𝑦(+g‘𝐺)𝑥) = 𝑥 ↔ (𝑒(+g‘𝐺)𝑥) = 𝑥)) |
9 | 8 | ovanraleqv 7299 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑒 → (∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
10 | 6, 9 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑒 → ((𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥)) ↔ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥)))) |
11 | 10 | iotan0 6423 |
. . . . . . . . . . 11
⊢ ((𝑒 ∈ 𝐵 ∧ 𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥)))) → (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
12 | | rsp 3131 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥) → (𝑥 ∈ 𝐵 → ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
13 | 11, 12 | simpl2im 504 |
. . . . . . . . . 10
⊢ ((𝑒 ∈ 𝐵 ∧ 𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥)))) → (𝑥 ∈ 𝐵 → ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
14 | 13 | 3expb 1119 |
. . . . . . . . 9
⊢ ((𝑒 ∈ 𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥))))) → (𝑥 ∈ 𝐵 → ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
15 | 14 | expcom 414 |
. . . . . . . 8
⊢ ((𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑦(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑦) = 𝑥)))) → (𝑒 ∈ 𝐵 → (𝑥 ∈ 𝐵 → ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥)))) |
16 | 5, 15 | sylan2b 594 |
. . . . . . 7
⊢ ((𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → (𝑒 ∈ 𝐵 → (𝑥 ∈ 𝐵 → ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥)))) |
17 | 16 | impcom 408 |
. . . . . 6
⊢ ((𝑒 ∈ 𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → (𝑥 ∈ 𝐵 → ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
18 | 17 | ralrimiv 3102 |
. . . . 5
⊢ ((𝑒 ∈ 𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥)) |
19 | 18 | ex 413 |
. . . 4
⊢ (𝑒 ∈ 𝐵 → ((𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
20 | 19 | reximia 3176 |
. . 3
⊢
(∃𝑒 ∈
𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥)) |
21 | 20 | anim2i 617 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
22 | 1, 2 | ismnddef 18387 |
. 2
⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
23 | 21, 22 | sylibr 233 |
1
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd) |