![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrislfgr | Structured version Visualization version GIF version |
Description: An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
Ref | Expression |
---|---|
acycgrislfgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
acycgrislfgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
acycgrislfgr | ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacycgr 34664 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
2 | 1 | biimpac 478 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
3 | loop1cycl 34656 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) ↔ {𝑎} ∈ (Edg‘𝐺))) | |
4 | 3simpa 1145 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) | |
5 | 4 | 2eximi 1830 | . . . . . . . 8 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) |
6 | 3, 5 | syl6bir 254 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → ({𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
7 | 6 | exlimdv 1928 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
8 | vex 3472 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
9 | hash1n0 14386 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ (♯‘𝑓) = 1) → 𝑓 ≠ ∅) | |
10 | 8, 9 | mpan 687 | . . . . . . . 8 ⊢ ((♯‘𝑓) = 1 → 𝑓 ≠ ∅) |
11 | 10 | anim2i 616 | . . . . . . 7 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
12 | 11 | 2eximi 1830 | . . . . . 6 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
13 | 7, 12 | syl6 35 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
14 | 13 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
15 | 14 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
16 | 2, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
17 | acycgrislfgr.1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
18 | acycgrislfgr.2 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
19 | 17, 18 | lfuhgr3 34638 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
20 | 19 | adantl 481 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
21 | 16, 20 | mpbird 257 | 1 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 {crab 3426 Vcvv 3468 ∅c0 4317 𝒫 cpw 4597 {csn 4623 class class class wbr 5141 dom cdm 5669 ⟶wf 6533 ‘cfv 6537 0cc0 11112 1c1 11113 ≤ cle 11253 2c2 12271 ♯chash 14295 Vtxcvtx 28764 iEdgciedg 28765 Edgcedg 28815 UHGraphcuhgr 28824 Cyclesccycls 29551 AcyclicGraphcacycgr 34661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-concat 14527 df-s1 14552 df-s2 14805 df-edg 28816 df-uhgr 28826 df-wlks 29365 df-wlkson 29366 df-trls 29458 df-trlson 29459 df-pths 29482 df-pthson 29484 df-cycls 29553 df-acycgr 34662 |
This theorem is referenced by: upgracycumgr 34672 |
Copyright terms: Public domain | W3C validator |