![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrislfgr | Structured version Visualization version GIF version |
Description: An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
Ref | Expression |
---|---|
acycgrislfgr.1 | β’ π = (VtxβπΊ) |
acycgrislfgr.2 | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
acycgrislfgr | β’ ((πΊ β AcyclicGraph β§ πΊ β UHGraph) β πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacycgr 34136 | . . . 4 β’ (πΊ β UHGraph β (πΊ β AcyclicGraph β Β¬ βπβπ(π(CyclesβπΊ)π β§ π β β ))) | |
2 | 1 | biimpac 480 | . . 3 β’ ((πΊ β AcyclicGraph β§ πΊ β UHGraph) β Β¬ βπβπ(π(CyclesβπΊ)π β§ π β β )) |
3 | loop1cycl 34128 | . . . . . . . 8 β’ (πΊ β UHGraph β (βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 1 β§ (πβ0) = π) β {π} β (EdgβπΊ))) | |
4 | 3simpa 1149 | . . . . . . . . 9 β’ ((π(CyclesβπΊ)π β§ (β―βπ) = 1 β§ (πβ0) = π) β (π(CyclesβπΊ)π β§ (β―βπ) = 1)) | |
5 | 4 | 2eximi 1839 | . . . . . . . 8 β’ (βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 1 β§ (πβ0) = π) β βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 1)) |
6 | 3, 5 | syl6bir 254 | . . . . . . 7 β’ (πΊ β UHGraph β ({π} β (EdgβπΊ) β βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 1))) |
7 | 6 | exlimdv 1937 | . . . . . 6 β’ (πΊ β UHGraph β (βπ{π} β (EdgβπΊ) β βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 1))) |
8 | vex 3479 | . . . . . . . . 9 β’ π β V | |
9 | hash1n0 14381 | . . . . . . . . 9 β’ ((π β V β§ (β―βπ) = 1) β π β β ) | |
10 | 8, 9 | mpan 689 | . . . . . . . 8 β’ ((β―βπ) = 1 β π β β ) |
11 | 10 | anim2i 618 | . . . . . . 7 β’ ((π(CyclesβπΊ)π β§ (β―βπ) = 1) β (π(CyclesβπΊ)π β§ π β β )) |
12 | 11 | 2eximi 1839 | . . . . . 6 β’ (βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 1) β βπβπ(π(CyclesβπΊ)π β§ π β β )) |
13 | 7, 12 | syl6 35 | . . . . 5 β’ (πΊ β UHGraph β (βπ{π} β (EdgβπΊ) β βπβπ(π(CyclesβπΊ)π β§ π β β ))) |
14 | 13 | con3d 152 | . . . 4 β’ (πΊ β UHGraph β (Β¬ βπβπ(π(CyclesβπΊ)π β§ π β β ) β Β¬ βπ{π} β (EdgβπΊ))) |
15 | 14 | adantl 483 | . . 3 β’ ((πΊ β AcyclicGraph β§ πΊ β UHGraph) β (Β¬ βπβπ(π(CyclesβπΊ)π β§ π β β ) β Β¬ βπ{π} β (EdgβπΊ))) |
16 | 2, 15 | mpd 15 | . 2 β’ ((πΊ β AcyclicGraph β§ πΊ β UHGraph) β Β¬ βπ{π} β (EdgβπΊ)) |
17 | acycgrislfgr.1 | . . . 4 β’ π = (VtxβπΊ) | |
18 | acycgrislfgr.2 | . . . 4 β’ πΌ = (iEdgβπΊ) | |
19 | 17, 18 | lfuhgr3 34110 | . . 3 β’ (πΊ β UHGraph β (πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β Β¬ βπ{π} β (EdgβπΊ))) |
20 | 19 | adantl 483 | . 2 β’ ((πΊ β AcyclicGraph β§ πΊ β UHGraph) β (πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β Β¬ βπ{π} β (EdgβπΊ))) |
21 | 16, 20 | mpbird 257 | 1 β’ ((πΊ β AcyclicGraph β§ πΊ β UHGraph) β πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)}) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 βwex 1782 β wcel 2107 β wne 2941 {crab 3433 Vcvv 3475 β c0 4323 π« cpw 4603 {csn 4629 class class class wbr 5149 dom cdm 5677 βΆwf 6540 βcfv 6544 0cc0 11110 1c1 11111 β€ cle 11249 2c2 12267 β―chash 14290 Vtxcvtx 28256 iEdgciedg 28257 Edgcedg 28307 UHGraphcuhgr 28316 Cyclesccycls 29042 AcyclicGraphcacycgr 34133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 df-s1 14546 df-s2 14799 df-edg 28308 df-uhgr 28318 df-wlks 28856 df-wlkson 28857 df-trls 28949 df-trlson 28950 df-pths 28973 df-pthson 28975 df-cycls 29044 df-acycgr 34134 |
This theorem is referenced by: upgracycumgr 34144 |
Copyright terms: Public domain | W3C validator |