Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrislfgr | Structured version Visualization version GIF version |
Description: An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
Ref | Expression |
---|---|
acycgrislfgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
acycgrislfgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
acycgrislfgr | ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacycgr 32636 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
2 | 1 | biimpac 482 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
3 | loop1cycl 32628 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) ↔ {𝑎} ∈ (Edg‘𝐺))) | |
4 | 3simpa 1145 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) | |
5 | 4 | 2eximi 1837 | . . . . . . . 8 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) |
6 | 3, 5 | syl6bir 257 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → ({𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
7 | 6 | exlimdv 1934 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
8 | vex 3413 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
9 | hash1n0 13845 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ (♯‘𝑓) = 1) → 𝑓 ≠ ∅) | |
10 | 8, 9 | mpan 689 | . . . . . . . 8 ⊢ ((♯‘𝑓) = 1 → 𝑓 ≠ ∅) |
11 | 10 | anim2i 619 | . . . . . . 7 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
12 | 11 | 2eximi 1837 | . . . . . 6 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
13 | 7, 12 | syl6 35 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
14 | 13 | con3d 155 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
15 | 14 | adantl 485 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
16 | 2, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
17 | acycgrislfgr.1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
18 | acycgrislfgr.2 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
19 | 17, 18 | lfuhgr3 32610 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
20 | 19 | adantl 485 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
21 | 16, 20 | mpbird 260 | 1 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 {crab 3074 Vcvv 3409 ∅c0 4227 𝒫 cpw 4497 {csn 4525 class class class wbr 5036 dom cdm 5528 ⟶wf 6336 ‘cfv 6340 0cc0 10588 1c1 10589 ≤ cle 10727 2c2 11742 ♯chash 13753 Vtxcvtx 26902 iEdgciedg 26903 Edgcedg 26953 UHGraphcuhgr 26962 Cyclesccycls 27687 AcyclicGraphcacycgr 32633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-n0 11948 df-xnn0 12020 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-hash 13754 df-word 13927 df-concat 13983 df-s1 14010 df-s2 14270 df-edg 26954 df-uhgr 26964 df-wlks 27502 df-wlkson 27503 df-trls 27595 df-trlson 27596 df-pths 27618 df-pthson 27620 df-cycls 27689 df-acycgr 32634 |
This theorem is referenced by: upgracycumgr 32644 |
Copyright terms: Public domain | W3C validator |