Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrislfgr | Structured version Visualization version GIF version |
Description: An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
Ref | Expression |
---|---|
acycgrislfgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
acycgrislfgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
acycgrislfgr | ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacycgr 33107 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
2 | 1 | biimpac 479 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
3 | loop1cycl 33099 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) ↔ {𝑎} ∈ (Edg‘𝐺))) | |
4 | 3simpa 1147 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) | |
5 | 4 | 2eximi 1838 | . . . . . . . 8 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) |
6 | 3, 5 | syl6bir 253 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → ({𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
7 | 6 | exlimdv 1936 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
8 | vex 3436 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
9 | hash1n0 14136 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ (♯‘𝑓) = 1) → 𝑓 ≠ ∅) | |
10 | 8, 9 | mpan 687 | . . . . . . . 8 ⊢ ((♯‘𝑓) = 1 → 𝑓 ≠ ∅) |
11 | 10 | anim2i 617 | . . . . . . 7 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
12 | 11 | 2eximi 1838 | . . . . . 6 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
13 | 7, 12 | syl6 35 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
14 | 13 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
15 | 14 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
16 | 2, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
17 | acycgrislfgr.1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
18 | acycgrislfgr.2 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
19 | 17, 18 | lfuhgr3 33081 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
20 | 19 | adantl 482 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
21 | 16, 20 | mpbird 256 | 1 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ∅c0 4256 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 0cc0 10871 1c1 10872 ≤ cle 11010 2c2 12028 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 UHGraphcuhgr 27426 Cyclesccycls 28153 AcyclicGraphcacycgr 33104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-edg 27418 df-uhgr 27428 df-wlks 27966 df-wlkson 27967 df-trls 28060 df-trlson 28061 df-pths 28084 df-pthson 28086 df-cycls 28155 df-acycgr 33105 |
This theorem is referenced by: upgracycumgr 33115 |
Copyright terms: Public domain | W3C validator |