| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrislfgr | Structured version Visualization version GIF version | ||
| Description: An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| acycgrislfgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| acycgrislfgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| acycgrislfgr | ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacycgr 35172 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
| 2 | 1 | biimpac 478 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 3 | loop1cycl 35164 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) ↔ {𝑎} ∈ (Edg‘𝐺))) | |
| 4 | 3simpa 1148 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) | |
| 5 | 4 | 2eximi 1836 | . . . . . . . 8 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) |
| 6 | 3, 5 | biimtrrdi 254 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → ({𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
| 7 | 6 | exlimdv 1933 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
| 8 | vex 3468 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 9 | hash1n0 14444 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ (♯‘𝑓) = 1) → 𝑓 ≠ ∅) | |
| 10 | 8, 9 | mpan 690 | . . . . . . . 8 ⊢ ((♯‘𝑓) = 1 → 𝑓 ≠ ∅) |
| 11 | 10 | anim2i 617 | . . . . . . 7 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 12 | 11 | 2eximi 1836 | . . . . . 6 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 13 | 7, 12 | syl6 35 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 14 | 13 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 16 | 2, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 17 | acycgrislfgr.1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 18 | acycgrislfgr.2 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 19 | 17, 18 | lfuhgr3 35147 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 21 | 16, 20 | mpbird 257 | 1 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 {crab 3420 Vcvv 3464 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 0cc0 11134 1c1 11135 ≤ cle 11275 2c2 12300 ♯chash 14353 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 UHGraphcuhgr 29040 Cyclesccycls 29772 AcyclicGraphcacycgr 35169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-edg 29032 df-uhgr 29042 df-wlks 29584 df-wlkson 29585 df-trls 29677 df-trlson 29678 df-pths 29701 df-pthson 29703 df-cycls 29774 df-acycgr 35170 |
| This theorem is referenced by: upgracycumgr 35180 |
| Copyright terms: Public domain | W3C validator |