| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrislfgr | Structured version Visualization version GIF version | ||
| Description: An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| acycgrislfgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| acycgrislfgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| acycgrislfgr | ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacycgr 35189 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
| 2 | 1 | biimpac 478 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 3 | loop1cycl 35181 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) ↔ {𝑎} ∈ (Edg‘𝐺))) | |
| 4 | 3simpa 1148 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) | |
| 5 | 4 | 2eximi 1837 | . . . . . . . 8 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝑎) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1)) |
| 6 | 3, 5 | biimtrrdi 254 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → ({𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
| 7 | 6 | exlimdv 1934 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1))) |
| 8 | vex 3440 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 9 | hash1n0 14328 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ (♯‘𝑓) = 1) → 𝑓 ≠ ∅) | |
| 10 | 8, 9 | mpan 690 | . . . . . . . 8 ⊢ ((♯‘𝑓) = 1 → 𝑓 ≠ ∅) |
| 11 | 10 | anim2i 617 | . . . . . . 7 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 12 | 11 | 2eximi 1837 | . . . . . 6 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 13 | 7, 12 | syl6 35 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 14 | 13 | con3d 152 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 16 | 2, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)) |
| 17 | acycgrislfgr.1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 18 | acycgrislfgr.2 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 19 | 17, 18 | lfuhgr3 35164 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) |
| 21 | 16, 20 | mpbird 257 | 1 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ∅c0 4280 𝒫 cpw 4547 {csn 4573 class class class wbr 5089 dom cdm 5614 ⟶wf 6477 ‘cfv 6481 0cc0 11006 1c1 11007 ≤ cle 11147 2c2 12180 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 Edgcedg 29025 UHGraphcuhgr 29034 Cyclesccycls 29763 AcyclicGraphcacycgr 35186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-edg 29026 df-uhgr 29036 df-wlks 29578 df-wlkson 29579 df-trls 29669 df-trlson 29670 df-pths 29692 df-pthson 29694 df-cycls 29765 df-acycgr 35187 |
| This theorem is referenced by: upgracycumgr 35197 |
| Copyright terms: Public domain | W3C validator |