Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgracycusgr Structured version   Visualization version   GIF version

Theorem umgracycusgr 33116
Description: An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.)
Assertion
Ref Expression
umgracycusgr ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)

Proof of Theorem umgracycusgr
Dummy variables 𝑥 𝑓 𝑗 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2umgrf 27468 . . 3 (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
4 isacycgr 33107 . . . . 5 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
54biimpa 477 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
62umgr2cycl 33103 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
7 2ne0 12077 . . . . . . . . . . . 12 2 ≠ 0
8 neeq1 3006 . . . . . . . . . . . 12 ((♯‘𝑓) = 2 → ((♯‘𝑓) ≠ 0 ↔ 2 ≠ 0))
97, 8mpbiri 257 . . . . . . . . . . 11 ((♯‘𝑓) = 2 → (♯‘𝑓) ≠ 0)
10 hasheq0 14078 . . . . . . . . . . . . 13 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
1110elv 3438 . . . . . . . . . . . 12 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
1211necon3bii 2996 . . . . . . . . . . 11 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
139, 12sylib 217 . . . . . . . . . 10 ((♯‘𝑓) = 2 → 𝑓 ≠ ∅)
1413anim2i 617 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
15142eximi 1838 . . . . . . . 8 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
166, 15syl 17 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
1716ex 413 . . . . . 6 (𝐺 ∈ UMGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
1817con3d 152 . . . . 5 (𝐺 ∈ UMGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
1918adantr 481 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
205, 19mpd 15 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘))
21 dff15 33056 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
2221biimpri 227 . . 3 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
233, 20, 22syl2an2r 682 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
241, 2isusgrs 27526 . . . 4 (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2524biimprd 247 . . 3 (𝐺 ∈ UMGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2625adantr 481 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2723, 26mpd 15 1 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  c0 4256  𝒫 cpw 4533   class class class wbr 5074  dom cdm 5589  wf 6429  1-1wf1 6430  cfv 6433  0cc0 10871  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  UMGraphcumgr 27451  USGraphcusgr 27519  Cyclesccycls 28153  AcyclicGraphcacycgr 33104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-umgr 27453  df-usgr 27521  df-wlks 27966  df-trls 28060  df-pths 28084  df-cycls 28155  df-acycgr 33105
This theorem is referenced by:  upgracycusgr  33117
  Copyright terms: Public domain W3C validator