Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgracycusgr Structured version   Visualization version   GIF version

Theorem umgracycusgr 35205
Description: An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.)
Assertion
Ref Expression
umgracycusgr ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)

Proof of Theorem umgracycusgr
Dummy variables 𝑥 𝑓 𝑗 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2731 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2umgrf 29083 . . 3 (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
4 isacycgr 35196 . . . . 5 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
54biimpa 476 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
62umgr2cycl 35192 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
7 2ne0 12235 . . . . . . . . . . . 12 2 ≠ 0
8 neeq1 2990 . . . . . . . . . . . 12 ((♯‘𝑓) = 2 → ((♯‘𝑓) ≠ 0 ↔ 2 ≠ 0))
97, 8mpbiri 258 . . . . . . . . . . 11 ((♯‘𝑓) = 2 → (♯‘𝑓) ≠ 0)
10 hasheq0 14276 . . . . . . . . . . . . 13 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
1110elv 3441 . . . . . . . . . . . 12 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
1211necon3bii 2980 . . . . . . . . . . 11 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
139, 12sylib 218 . . . . . . . . . 10 ((♯‘𝑓) = 2 → 𝑓 ≠ ∅)
1413anim2i 617 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
15142eximi 1837 . . . . . . . 8 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
166, 15syl 17 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
1716ex 412 . . . . . 6 (𝐺 ∈ UMGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
1817con3d 152 . . . . 5 (𝐺 ∈ UMGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
1918adantr 480 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
205, 19mpd 15 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘))
21 dff15 35103 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
2221biimpri 228 . . 3 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
233, 20, 22syl2an2r 685 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
241, 2isusgrs 29141 . . . 4 (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2524biimprd 248 . . 3 (𝐺 ∈ UMGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2625adantr 480 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2723, 26mpd 15 1 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  c0 4282  𝒫 cpw 4549   class class class wbr 5093  dom cdm 5619  wf 6483  1-1wf1 6484  cfv 6487  0cc0 11012  2c2 12186  chash 14243  Vtxcvtx 28981  iEdgciedg 28982  UMGraphcumgr 29066  USGraphcusgr 29134  Cyclesccycls 29770  AcyclicGraphcacycgr 35193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-hash 14244  df-word 14427  df-concat 14484  df-s1 14510  df-s2 14761  df-s3 14762  df-edg 29033  df-uhgr 29043  df-upgr 29067  df-umgr 29068  df-usgr 29136  df-wlks 29585  df-trls 29676  df-pths 29699  df-cycls 29772  df-acycgr 35194
This theorem is referenced by:  upgracycusgr  35206
  Copyright terms: Public domain W3C validator