Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgracycusgr Structured version   Visualization version   GIF version

Theorem umgracycusgr 32829
Description: An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.)
Assertion
Ref Expression
umgracycusgr ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)

Proof of Theorem umgracycusgr
Dummy variables 𝑥 𝑓 𝑗 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2737 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2umgrf 27189 . . 3 (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
4 isacycgr 32820 . . . . 5 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
54biimpa 480 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
62umgr2cycl 32816 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
7 2ne0 11934 . . . . . . . . . . . 12 2 ≠ 0
8 neeq1 3003 . . . . . . . . . . . 12 ((♯‘𝑓) = 2 → ((♯‘𝑓) ≠ 0 ↔ 2 ≠ 0))
97, 8mpbiri 261 . . . . . . . . . . 11 ((♯‘𝑓) = 2 → (♯‘𝑓) ≠ 0)
10 hasheq0 13930 . . . . . . . . . . . . 13 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
1110elv 3414 . . . . . . . . . . . 12 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
1211necon3bii 2993 . . . . . . . . . . 11 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
139, 12sylib 221 . . . . . . . . . 10 ((♯‘𝑓) = 2 → 𝑓 ≠ ∅)
1413anim2i 620 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
15142eximi 1843 . . . . . . . 8 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
166, 15syl 17 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
1716ex 416 . . . . . 6 (𝐺 ∈ UMGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
1817con3d 155 . . . . 5 (𝐺 ∈ UMGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
1918adantr 484 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
205, 19mpd 15 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘))
21 dff15 32769 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
2221biimpri 231 . . 3 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
233, 20, 22syl2an2r 685 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
241, 2isusgrs 27247 . . . 4 (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2524biimprd 251 . . 3 (𝐺 ∈ UMGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2625adantr 484 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2723, 26mpd 15 1 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  wne 2940  wrex 3062  {crab 3065  Vcvv 3408  c0 4237  𝒫 cpw 4513   class class class wbr 5053  dom cdm 5551  wf 6376  1-1wf1 6377  cfv 6380  0cc0 10729  2c2 11885  chash 13896  Vtxcvtx 27087  iEdgciedg 27088  UMGraphcumgr 27172  USGraphcusgr 27240  Cyclesccycls 27872  AcyclicGraphcacycgr 32817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-s2 14413  df-s3 14414  df-edg 27139  df-uhgr 27149  df-upgr 27173  df-umgr 27174  df-usgr 27242  df-wlks 27687  df-trls 27780  df-pths 27803  df-cycls 27874  df-acycgr 32818
This theorem is referenced by:  upgracycusgr  32830
  Copyright terms: Public domain W3C validator