Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > umgracycusgr | Structured version Visualization version GIF version |
Description: An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
Ref | Expression |
---|---|
umgracycusgr | ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | umgrf 27468 | . . 3 ⊢ (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) |
4 | isacycgr 33107 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
5 | 4 | biimpa 477 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
6 | 2 | umgr2cycl 33103 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) |
7 | 2ne0 12077 | . . . . . . . . . . . 12 ⊢ 2 ≠ 0 | |
8 | neeq1 3006 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑓) = 2 → ((♯‘𝑓) ≠ 0 ↔ 2 ≠ 0)) | |
9 | 7, 8 | mpbiri 257 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) = 2 → (♯‘𝑓) ≠ 0) |
10 | hasheq0 14078 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
11 | 10 | elv 3438 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
12 | 11 | necon3bii 2996 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅) |
13 | 9, 12 | sylib 217 | . . . . . . . . . 10 ⊢ ((♯‘𝑓) = 2 → 𝑓 ≠ ∅) |
14 | 13 | anim2i 617 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
15 | 14 | 2eximi 1838 | . . . . . . . 8 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
16 | 6, 15 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
17 | 16 | ex 413 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
18 | 17 | con3d 152 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘))) |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘))) |
20 | 5, 19 | mpd 15 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘)) |
21 | dff15 33056 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘))) | |
22 | 21 | biimpri 227 | . . 3 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗 ≠ 𝑘)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) |
23 | 3, 20, 22 | syl2an2r 682 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) |
24 | 1, 2 | isusgrs 27526 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})) |
25 | 24 | biimprd 247 | . . 3 ⊢ (𝐺 ∈ UMGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph)) |
26 | 25 | adantr 481 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph)) |
27 | 23, 26 | mpd 15 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 Vcvv 3432 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 0cc0 10871 2c2 12028 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 UMGraphcumgr 27451 USGraphcusgr 27519 Cyclesccycls 28153 AcyclicGraphcacycgr 33104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-edg 27418 df-uhgr 27428 df-upgr 27452 df-umgr 27453 df-usgr 27521 df-wlks 27966 df-trls 28060 df-pths 28084 df-cycls 28155 df-acycgr 33105 |
This theorem is referenced by: upgracycusgr 33117 |
Copyright terms: Public domain | W3C validator |