Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgracycusgr Structured version   Visualization version   GIF version

Theorem umgracycusgr 35141
Description: An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.)
Assertion
Ref Expression
umgracycusgr ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)

Proof of Theorem umgracycusgr
Dummy variables 𝑥 𝑓 𝑗 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2umgrf 29025 . . 3 (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
4 isacycgr 35132 . . . . 5 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
54biimpa 476 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
62umgr2cycl 35128 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2))
7 2ne0 12290 . . . . . . . . . . . 12 2 ≠ 0
8 neeq1 2987 . . . . . . . . . . . 12 ((♯‘𝑓) = 2 → ((♯‘𝑓) ≠ 0 ↔ 2 ≠ 0))
97, 8mpbiri 258 . . . . . . . . . . 11 ((♯‘𝑓) = 2 → (♯‘𝑓) ≠ 0)
10 hasheq0 14328 . . . . . . . . . . . . 13 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
1110elv 3452 . . . . . . . . . . . 12 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
1211necon3bii 2977 . . . . . . . . . . 11 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
139, 12sylib 218 . . . . . . . . . 10 ((♯‘𝑓) = 2 → 𝑓 ≠ ∅)
1413anim2i 617 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
15142eximi 1836 . . . . . . . 8 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
166, 15syl 17 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
1716ex 412 . . . . . 6 (𝐺 ∈ UMGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
1817con3d 152 . . . . 5 (𝐺 ∈ UMGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
1918adantr 480 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
205, 19mpd 15 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘))
21 dff15 35074 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)))
2221biimpri 228 . . 3 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ∧ ¬ ∃𝑗 ∈ dom (iEdg‘𝐺)∃𝑘 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑗) = ((iEdg‘𝐺)‘𝑘) ∧ 𝑗𝑘)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
233, 20, 22syl2an2r 685 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
241, 2isusgrs 29083 . . . 4 (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2524biimprd 248 . . 3 (𝐺 ∈ UMGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2625adantr 480 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} → 𝐺 ∈ USGraph))
2723, 26mpd 15 1 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  c0 4296  𝒫 cpw 4563   class class class wbr 5107  dom cdm 5638  wf 6507  1-1wf1 6508  cfv 6511  0cc0 11068  2c2 12241  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  UMGraphcumgr 29008  USGraphcusgr 29076  Cyclesccycls 29715  AcyclicGraphcacycgr 35129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-umgr 29010  df-usgr 29078  df-wlks 29527  df-trls 29620  df-pths 29644  df-cycls 29717  df-acycgr 35130
This theorem is referenced by:  upgracycusgr  35142
  Copyright terms: Public domain W3C validator