Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isanmbfmOLD Structured version   Visualization version   GIF version

Theorem isanmbfmOLD 34252
Description: Obsolete version of isanmbfm 34254 as of 13-Jan-2025. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
isanmbfmOLD (𝜑𝐹 ran MblFnM)

Proof of Theorem isanmbfmOLD
StepHypRef Expression
1 ovssunirn 7426 . 2 (𝑆MblFnM𝑇) ⊆ ran MblFnM
2 mbfmf.3 . 2 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
31, 2sselid 3947 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4874  ran crn 5642  (class class class)co 7390  sigAlgebracsiga 34105  MblFnMcmbfm 34246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator