Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isanmbfmOLD Structured version   Visualization version   GIF version

Theorem isanmbfmOLD 34235
Description: Obsolete version of isanmbfm 34237 as of 13-Jan-2025. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
isanmbfmOLD (𝜑𝐹 ran MblFnM)

Proof of Theorem isanmbfmOLD
StepHypRef Expression
1 ovssunirn 7466 . 2 (𝑆MblFnM𝑇) ⊆ ran MblFnM
2 mbfmf.3 . 2 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
31, 2sselid 3992 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   cuni 4911  ran crn 5689  (class class class)co 7430  sigAlgebracsiga 34088  MblFnMcmbfm 34229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-cnv 5696  df-dm 5698  df-rn 5699  df-iota 6515  df-fv 6570  df-ov 7433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator