![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isanmbfmOLD | Structured version Visualization version GIF version |
Description: Obsolete version of isanmbfm 34237 as of 13-Jan-2025. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Ref | Expression |
---|---|
isanmbfmOLD | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovssunirn 7466 | . 2 ⊢ (𝑆MblFnM𝑇) ⊆ ∪ ran MblFnM | |
2 | mbfmf.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
3 | 1, 2 | sselid 3992 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∪ cuni 4911 ran crn 5689 (class class class)co 7430 sigAlgebracsiga 34088 MblFnMcmbfm 34229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |