| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmcnvima | Structured version Visualization version GIF version | ||
| Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
| Ref | Expression |
|---|---|
| mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
| mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| mbfmcnvima.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| Ref | Expression |
|---|---|
| mbfmcnvima | ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq2 6027 | . . 3 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝐴) ∈ 𝑆)) |
| 3 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
| 4 | mbfmf.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | mbfmf.2 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
| 6 | 4, 5 | ismbfm 34241 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
| 7 | 3, 6 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
| 8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆) |
| 9 | mbfmcnvima.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
| 10 | 2, 8, 9 | rspcdva 3589 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4871 ◡ccnv 5637 ran crn 5639 “ cima 5641 (class class class)co 7387 ↑m cmap 8799 sigAlgebracsiga 34098 MblFnMcmbfm 34239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-mbfm 34240 |
| This theorem is referenced by: imambfm 34253 mbfmco 34255 mbfmco2 34256 sxbrsiga 34281 sibfinima 34330 sibfof 34331 orvcoel 34453 orvccel 34454 |
| Copyright terms: Public domain | W3C validator |