Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnvima Structured version   Visualization version   GIF version

Theorem mbfmcnvima 34246
Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
mbfmcnvima.4 (𝜑𝐴𝑇)
Assertion
Ref Expression
mbfmcnvima (𝜑 → (𝐹𝐴) ∈ 𝑆)

Proof of Theorem mbfmcnvima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaeq2 6027 . . 3 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21eleq1d 2813 . 2 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝐴) ∈ 𝑆))
3 mbfmf.3 . . . 4 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
4 mbfmf.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
5 mbfmf.2 . . . . 5 (𝜑𝑇 ran sigAlgebra)
64, 5ismbfm 34241 . . . 4 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
73, 6mpbid 232 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
87simprd 495 . 2 (𝜑 → ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)
9 mbfmcnvima.4 . 2 (𝜑𝐴𝑇)
102, 8, 9rspcdva 3589 1 (𝜑 → (𝐹𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   cuni 4871  ccnv 5637  ran crn 5639  cima 5641  (class class class)co 7387  m cmap 8799  sigAlgebracsiga 34098  MblFnMcmbfm 34239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-mbfm 34240
This theorem is referenced by:  imambfm  34253  mbfmco  34255  mbfmco2  34256  sxbrsiga  34281  sibfinima  34330  sibfof  34331  orvcoel  34453  orvccel  34454
  Copyright terms: Public domain W3C validator