Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnvima Structured version   Visualization version   GIF version

Theorem mbfmcnvima 33931
Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
mbfmcnvima.4 (𝜑𝐴𝑇)
Assertion
Ref Expression
mbfmcnvima (𝜑 → (𝐹𝐴) ∈ 𝑆)

Proof of Theorem mbfmcnvima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaeq2 6054 . . 3 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21eleq1d 2810 . 2 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝐴) ∈ 𝑆))
3 mbfmf.3 . . . 4 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
4 mbfmf.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
5 mbfmf.2 . . . . 5 (𝜑𝑇 ran sigAlgebra)
64, 5ismbfm 33926 . . . 4 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
73, 6mpbid 231 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
87simprd 494 . 2 (𝜑 → ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)
9 mbfmcnvima.4 . 2 (𝜑𝐴𝑇)
102, 8, 9rspcdva 3603 1 (𝜑 → (𝐹𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051   cuni 4903  ccnv 5671  ran crn 5673  cima 5675  (class class class)co 7415  m cmap 8841  sigAlgebracsiga 33783  MblFnMcmbfm 33924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-mbfm 33925
This theorem is referenced by:  imambfm  33938  mbfmco  33940  mbfmco2  33941  sxbrsiga  33966  sibfinima  34015  sibfof  34016  orvcoel  34137  orvccel  34138
  Copyright terms: Public domain W3C validator