| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmcnvima | Structured version Visualization version GIF version | ||
| Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
| Ref | Expression |
|---|---|
| mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
| mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| mbfmcnvima.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| Ref | Expression |
|---|---|
| mbfmcnvima | ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq2 6004 | . . 3 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝐴) ∈ 𝑆)) |
| 3 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
| 4 | mbfmf.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | mbfmf.2 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
| 6 | 4, 5 | ismbfm 34264 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
| 7 | 3, 6 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
| 8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆) |
| 9 | mbfmcnvima.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
| 10 | 2, 8, 9 | rspcdva 3573 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4856 ◡ccnv 5613 ran crn 5615 “ cima 5617 (class class class)co 7346 ↑m cmap 8750 sigAlgebracsiga 34121 MblFnMcmbfm 34262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-mbfm 34263 |
| This theorem is referenced by: imambfm 34275 mbfmco 34277 mbfmco2 34278 sxbrsiga 34303 sibfinima 34352 sibfof 34353 orvcoel 34475 orvccel 34476 |
| Copyright terms: Public domain | W3C validator |