![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmcnvima | Structured version Visualization version GIF version |
Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
mbfmcnvima.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
Ref | Expression |
---|---|
mbfmcnvima | ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 6054 | . . 3 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
2 | 1 | eleq1d 2810 | . 2 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝐴) ∈ 𝑆)) |
3 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
4 | mbfmf.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
5 | mbfmf.2 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
6 | 4, 5 | ismbfm 33926 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
7 | 3, 6 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
8 | 7 | simprd 494 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆) |
9 | mbfmcnvima.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
10 | 2, 8, 9 | rspcdva 3603 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∪ cuni 4903 ◡ccnv 5671 ran crn 5673 “ cima 5675 (class class class)co 7415 ↑m cmap 8841 sigAlgebracsiga 33783 MblFnMcmbfm 33924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-mbfm 33925 |
This theorem is referenced by: imambfm 33938 mbfmco 33940 mbfmco2 33941 sxbrsiga 33966 sibfinima 34015 sibfof 34016 orvcoel 34137 orvccel 34138 |
Copyright terms: Public domain | W3C validator |