![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmcnvima | Structured version Visualization version GIF version |
Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
mbfmcnvima.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
Ref | Expression |
---|---|
mbfmcnvima | ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmcnvima.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
2 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
3 | mbfmf.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | mbfmf.2 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
5 | 3, 4 | ismbfm 30830 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
6 | 2, 5 | mpbid 224 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
7 | 6 | simprd 490 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆) |
8 | imaeq2 5679 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
9 | 8 | eleq1d 2863 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝐴) ∈ 𝑆)) |
10 | 9 | rspcv 3493 | . 2 ⊢ (𝐴 ∈ 𝑇 → (∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆 → (◡𝐹 “ 𝐴) ∈ 𝑆)) |
11 | 1, 7, 10 | sylc 65 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∪ cuni 4628 ◡ccnv 5311 ran crn 5313 “ cima 5315 (class class class)co 6878 ↑𝑚 cmap 8095 sigAlgebracsiga 30686 MblFnMcmbfm 30828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-mbfm 30829 |
This theorem is referenced by: imambfm 30840 mbfmco 30842 mbfmco2 30843 sxbrsiga 30868 sibfinima 30917 sibfof 30918 orvcoel 31040 orvccel 31041 |
Copyright terms: Public domain | W3C validator |