Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnvima Structured version   Visualization version   GIF version

Theorem mbfmcnvima 34220
Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
mbfmcnvima.4 (𝜑𝐴𝑇)
Assertion
Ref Expression
mbfmcnvima (𝜑 → (𝐹𝐴) ∈ 𝑆)

Proof of Theorem mbfmcnvima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaeq2 6085 . . 3 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21eleq1d 2829 . 2 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝐴) ∈ 𝑆))
3 mbfmf.3 . . . 4 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
4 mbfmf.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
5 mbfmf.2 . . . . 5 (𝜑𝑇 ran sigAlgebra)
64, 5ismbfm 34215 . . . 4 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
73, 6mpbid 232 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
87simprd 495 . 2 (𝜑 → ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)
9 mbfmcnvima.4 . 2 (𝜑𝐴𝑇)
102, 8, 9rspcdva 3636 1 (𝜑 → (𝐹𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067   cuni 4931  ccnv 5699  ran crn 5701  cima 5703  (class class class)co 7448  m cmap 8884  sigAlgebracsiga 34072  MblFnMcmbfm 34213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-mbfm 34214
This theorem is referenced by:  imambfm  34227  mbfmco  34229  mbfmco2  34230  sxbrsiga  34255  sibfinima  34304  sibfof  34305  orvcoel  34426  orvccel  34427
  Copyright terms: Public domain W3C validator