Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmf Structured version   Visualization version   GIF version

Theorem mbfmf 34218
Description: A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
mbfmf (𝜑𝐹: 𝑆 𝑇)

Proof of Theorem mbfmf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmf.3 . . . 4 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
2 mbfmf.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
3 mbfmf.2 . . . . 5 (𝜑𝑇 ran sigAlgebra)
42, 3ismbfm 34215 . . . 4 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
51, 4mpbid 232 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
65simpld 494 . 2 (𝜑𝐹 ∈ ( 𝑇m 𝑆))
7 elmapi 8907 . 2 (𝐹 ∈ ( 𝑇m 𝑆) → 𝐹: 𝑆 𝑇)
86, 7syl 17 1 (𝜑𝐹: 𝑆 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067   cuni 4931  ccnv 5699  ran crn 5701  cima 5703  wf 6569  (class class class)co 7448  m cmap 8884  sigAlgebracsiga 34072  MblFnMcmbfm 34213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-mbfm 34214
This theorem is referenced by:  imambfm  34227  mbfmco  34229  mbfmco2  34230  mbfmvolf  34231  sibff  34301  sitgclg  34307  orvcval4  34425
  Copyright terms: Public domain W3C validator