| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmf | Structured version Visualization version GIF version | ||
| Description: A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
| mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| Ref | Expression |
|---|---|
| mbfmf | ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
| 2 | mbfmf.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 3 | mbfmf.2 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
| 4 | 2, 3 | ismbfm 34282 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
| 5 | 1, 4 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
| 6 | 5 | simpld 494 | . 2 ⊢ (𝜑 → 𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆)) |
| 7 | elmapi 8863 | . 2 ⊢ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) → 𝐹:∪ 𝑆⟶∪ 𝑇) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∪ cuni 4883 ◡ccnv 5653 ran crn 5655 “ cima 5657 ⟶wf 6527 (class class class)co 7405 ↑m cmap 8840 sigAlgebracsiga 34139 MblFnMcmbfm 34280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-mbfm 34281 |
| This theorem is referenced by: imambfm 34294 mbfmco 34296 mbfmco2 34297 mbfmvolf 34298 sibff 34368 sitgclg 34374 orvcval4 34493 |
| Copyright terms: Public domain | W3C validator |