MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovssunirn Structured version   Visualization version   GIF version

Theorem ovssunirn 7385
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
ovssunirn (𝑋𝐹𝑌) ⊆ ran 𝐹

Proof of Theorem ovssunirn
StepHypRef Expression
1 df-ov 7352 . 2 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
2 fvssunirn 6853 . 2 (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹
31, 2eqsstri 3982 1 (𝑋𝐹𝑌) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wss 3903  cop 4583   cuni 4858  ran crn 5620  cfv 6482  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-cnv 5627  df-dm 5629  df-rn 5630  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  prdsvallem  17358  prdsplusg  17362  prdsmulr  17363  prdsvsca  17364  prdshom  17371  wunfunc  17808  wunnat  17866  homarw  17953  catcoppccl  18024  catcfuccl  18025  catcxpccl  18113  isanmbfmOLD  34238  isanmbfm  34240
  Copyright terms: Public domain W3C validator