| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovssunirn | Structured version Visualization version GIF version | ||
| Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovssunirn | ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7352 | . 2 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
| 2 | fvssunirn 6853 | . 2 ⊢ (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹 | |
| 3 | 1, 2 | eqsstri 3982 | 1 ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3903 〈cop 4583 ∪ cuni 4858 ran crn 5620 ‘cfv 6482 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: prdsvallem 17358 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 wunfunc 17808 wunnat 17866 homarw 17953 catcoppccl 18024 catcfuccl 18025 catcxpccl 18113 isanmbfmOLD 34238 isanmbfm 34240 |
| Copyright terms: Public domain | W3C validator |