| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovssunirn | Structured version Visualization version GIF version | ||
| Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovssunirn | ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
| 2 | fvssunirn 6891 | . 2 ⊢ (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹 | |
| 3 | 1, 2 | eqsstri 3993 | 1 ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 〈cop 4595 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: prdsvallem 17417 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 wunfunc 17863 wunnat 17921 homarw 18008 catcoppccl 18079 catcfuccl 18080 catcxpccl 18168 isanmbfmOLD 34245 isanmbfm 34247 |
| Copyright terms: Public domain | W3C validator |