| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovssunirn | Structured version Visualization version GIF version | ||
| Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovssunirn | ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7402 | . 2 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
| 2 | fvssunirn 6905 | . 2 ⊢ (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹 | |
| 3 | 1, 2 | eqsstri 4003 | 1 ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3924 〈cop 4605 ∪ cuni 4880 ran crn 5652 ‘cfv 6527 (class class class)co 7399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-cnv 5659 df-dm 5661 df-rn 5662 df-iota 6480 df-fv 6535 df-ov 7402 |
| This theorem is referenced by: prdsvallem 17453 prdsplusg 17457 prdsmulr 17458 prdsvsca 17459 prdshom 17466 wunfunc 17899 wunnat 17957 homarw 18044 catcoppccl 18115 catcfuccl 18116 catcxpccl 18204 isanmbfmOLD 34194 isanmbfm 34196 |
| Copyright terms: Public domain | W3C validator |