MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovssunirn Structured version   Visualization version   GIF version

Theorem ovssunirn 7435
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
ovssunirn (𝑋𝐹𝑌) ⊆ ran 𝐹

Proof of Theorem ovssunirn
StepHypRef Expression
1 df-ov 7402 . 2 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
2 fvssunirn 6905 . 2 (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹
31, 2eqsstri 4003 1 (𝑋𝐹𝑌) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wss 3924  cop 4605   cuni 4880  ran crn 5652  cfv 6527  (class class class)co 7399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-cnv 5659  df-dm 5661  df-rn 5662  df-iota 6480  df-fv 6535  df-ov 7402
This theorem is referenced by:  prdsvallem  17453  prdsplusg  17457  prdsmulr  17458  prdsvsca  17459  prdshom  17466  wunfunc  17899  wunnat  17957  homarw  18044  catcoppccl  18115  catcfuccl  18116  catcxpccl  18204  isanmbfmOLD  34194  isanmbfm  34196
  Copyright terms: Public domain W3C validator