![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovssunirn | Structured version Visualization version GIF version |
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
ovssunirn | ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6907 | . 2 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
2 | fvssunirn 6461 | . 2 ⊢ (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹 | |
3 | 1, 2 | eqsstri 3859 | 1 ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3797 〈cop 4402 ∪ cuni 4657 ran crn 5342 ‘cfv 6122 (class class class)co 6904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-cnv 5349 df-dm 5351 df-rn 5352 df-iota 6085 df-fv 6130 df-ov 6907 |
This theorem is referenced by: prdsval 16467 prdsplusg 16470 prdsmulr 16471 prdsvsca 16472 prdshom 16479 wunfunc 16910 wunnat 16967 homarw 17047 catcoppccl 17109 catcfuccl 17110 catcxpccl 17199 |
Copyright terms: Public domain | W3C validator |