MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovssunirn Structured version   Visualization version   GIF version

Theorem ovssunirn 7382
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
ovssunirn (𝑋𝐹𝑌) ⊆ ran 𝐹

Proof of Theorem ovssunirn
StepHypRef Expression
1 df-ov 7349 . 2 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
2 fvssunirn 6853 . 2 (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹
31, 2eqsstri 3976 1 (𝑋𝐹𝑌) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wss 3897  cop 4579   cuni 4856  ran crn 5615  cfv 6481  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  prdsvallem  17358  prdsplusg  17362  prdsmulr  17363  prdsvsca  17364  prdshom  17371  wunfunc  17808  wunnat  17866  homarw  17953  catcoppccl  18024  catcfuccl  18025  catcxpccl  18113  isanmbfm  34269
  Copyright terms: Public domain W3C validator