Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovssunirn | Structured version Visualization version GIF version |
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
ovssunirn | ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7160 | . 2 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
2 | fvssunirn 6693 | . 2 ⊢ (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹 | |
3 | 1, 2 | eqsstri 3929 | 1 ⊢ (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3861 〈cop 4532 ∪ cuni 4802 ran crn 5530 ‘cfv 6341 (class class class)co 7157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-cnv 5537 df-dm 5539 df-rn 5540 df-iota 6300 df-fv 6349 df-ov 7160 |
This theorem is referenced by: prdsval 16801 prdsplusg 16804 prdsmulr 16805 prdsvsca 16806 prdshom 16813 wunfunc 17243 wunnat 17300 homarw 17387 catcoppccl 17449 catcfuccl 17450 catcxpccl 17538 |
Copyright terms: Public domain | W3C validator |