MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovssunirn Structured version   Visualization version   GIF version

Theorem ovssunirn 7441
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
ovssunirn (𝑋𝐹𝑌) ⊆ ran 𝐹

Proof of Theorem ovssunirn
StepHypRef Expression
1 df-ov 7408 . 2 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
2 fvssunirn 6918 . 2 (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹
31, 2eqsstri 4011 1 (𝑋𝐹𝑌) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wss 3943  cop 4629   cuni 4902  ran crn 5670  cfv 6537  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-cnv 5677  df-dm 5679  df-rn 5680  df-iota 6489  df-fv 6545  df-ov 7408
This theorem is referenced by:  prdsvallem  17409  prdsplusg  17413  prdsmulr  17414  prdsvsca  17415  prdshom  17422  wunfunc  17860  wunfuncOLD  17861  wunnat  17919  wunnatOLD  17920  homarw  18008  catcoppccl  18079  catcoppcclOLD  18080  catcfuccl  18081  catcfucclOLD  18082  catcxpccl  18171  catcxpcclOLD  18172  isanmbfmOLD  33783  isanmbfm  33785
  Copyright terms: Public domain W3C validator