Step | Hyp | Ref
| Expression |
1 | | xrstos 32167 |
. . 3
β’
β*π β Toset |
2 | | tospos 18369 |
. . 3
β’
(β*π β Toset β
β*π β Poset) |
3 | 1, 2 | ax-mp 5 |
. 2
β’
β*π β Poset |
4 | | xrsbas 20953 |
. . . . . 6
β’
β* =
(Baseββ*π ) |
5 | | xrsle 20957 |
. . . . . 6
β’ β€ =
(leββ*π ) |
6 | | eqid 2732 |
. . . . . 6
β’
(lubββ*π ) =
(lubββ*π ) |
7 | | biid 260 |
. . . . . 6
β’
((βπ β
π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π)) β (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
8 | 4, 5, 6, 7, 2 | lubdm 18300 |
. . . . 5
β’
(β*π β Toset β dom
(lubββ*π ) = {π₯ β π« β* β£
β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))}) |
9 | 1, 8 | ax-mp 5 |
. . . 4
β’ dom
(lubββ*π ) = {π₯ β π« β* β£
β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))} |
10 | | rabid2 3464 |
. . . . 5
β’
(π« β* = {π₯ β π« β* β£
β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))} β βπ₯ β π«
β*β!π β β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
11 | | velpw 4606 |
. . . . . 6
β’ (π₯ β π«
β* β π₯ β
β*) |
12 | | xrltso 13116 |
. . . . . . . . 9
β’ < Or
β* |
13 | 12 | a1i 11 |
. . . . . . . 8
β’ (π₯ β β*
β < Or β*) |
14 | | xrsupss 13284 |
. . . . . . . 8
β’ (π₯ β β*
β βπ β
β* (βπ β π₯ Β¬ π < π β§ βπ β β* (π < π β βπ β π₯ π < π))) |
15 | 13, 14 | supeu 9445 |
. . . . . . 7
β’ (π₯ β β*
β β!π β
β* (βπ β π₯ Β¬ π < π β§ βπ β β* (π < π β βπ β π₯ π < π))) |
16 | | xrslt 32164 |
. . . . . . . . 9
β’ < =
(ltββ*π ) |
17 | 1 | a1i 11 |
. . . . . . . . 9
β’ (π₯ β β*
β β*π β Toset) |
18 | | id 22 |
. . . . . . . . 9
β’ (π₯ β β*
β π₯ β
β*) |
19 | 4, 16, 17, 18, 5 | toslublem 32129 |
. . . . . . . 8
β’ ((π₯ β β*
β§ π β
β*) β ((βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π)) β (βπ β π₯ Β¬ π < π β§ βπ β β* (π < π β βπ β π₯ π < π)))) |
20 | 19 | reubidva 3392 |
. . . . . . 7
β’ (π₯ β β*
β (β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π)) β β!π β β* (βπ β π₯ Β¬ π < π β§ βπ β β* (π < π β βπ β π₯ π < π)))) |
21 | 15, 20 | mpbird 256 |
. . . . . 6
β’ (π₯ β β*
β β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
22 | 11, 21 | sylbi 216 |
. . . . 5
β’ (π₯ β π«
β* β β!π β β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
23 | 10, 22 | mprgbir 3068 |
. . . 4
β’ π«
β* = {π₯
β π« β* β£ β!π β β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))} |
24 | 9, 23 | eqtr4i 2763 |
. . 3
β’ dom
(lubββ*π ) = π«
β* |
25 | | eqid 2732 |
. . . . . 6
β’
(glbββ*π ) =
(glbββ*π ) |
26 | | biid 260 |
. . . . . 6
β’
((βπ β
π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π)) β (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
27 | 4, 5, 25, 26, 2 | glbdm 18313 |
. . . . 5
β’
(β*π β Toset β dom
(glbββ*π ) = {π₯ β π« β* β£
β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))}) |
28 | 1, 27 | ax-mp 5 |
. . . 4
β’ dom
(glbββ*π ) = {π₯ β π« β* β£
β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))} |
29 | | rabid2 3464 |
. . . . 5
β’
(π« β* = {π₯ β π« β* β£
β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))} β βπ₯ β π«
β*β!π β β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
30 | | cnvso 6284 |
. . . . . . . . . 10
β’ ( < Or
β* β β‘ < Or
β*) |
31 | 12, 30 | mpbi 229 |
. . . . . . . . 9
β’ β‘ < Or
β* |
32 | 31 | a1i 11 |
. . . . . . . 8
β’ (π₯ β β*
β β‘ < Or
β*) |
33 | | xrinfmss2 13286 |
. . . . . . . 8
β’ (π₯ β β*
β βπ β
β* (βπ β π₯ Β¬ πβ‘
< π β§ βπ β β*
(πβ‘ < π β βπ β π₯ πβ‘
< π))) |
34 | 32, 33 | supeu 9445 |
. . . . . . 7
β’ (π₯ β β*
β β!π β
β* (βπ β π₯ Β¬ πβ‘
< π β§ βπ β β*
(πβ‘ < π β βπ β π₯ πβ‘
< π))) |
35 | 4, 16, 17, 18, 5 | tosglblem 32131 |
. . . . . . . 8
β’ ((π₯ β β*
β§ π β
β*) β ((βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π)) β (βπ β π₯ Β¬ πβ‘
< π β§ βπ β β*
(πβ‘ < π β βπ β π₯ πβ‘
< π)))) |
36 | 35 | reubidva 3392 |
. . . . . . 7
β’ (π₯ β β*
β (β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π)) β β!π β β* (βπ β π₯ Β¬ πβ‘
< π β§ βπ β β*
(πβ‘ < π β βπ β π₯ πβ‘
< π)))) |
37 | 34, 36 | mpbird 256 |
. . . . . 6
β’ (π₯ β β*
β β!π β
β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
38 | 11, 37 | sylbi 216 |
. . . . 5
β’ (π₯ β π«
β* β β!π β β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))) |
39 | 29, 38 | mprgbir 3068 |
. . . 4
β’ π«
β* = {π₯
β π« β* β£ β!π β β* (βπ β π₯ π β€ π β§ βπ β β* (βπ β π₯ π β€ π β π β€ π))} |
40 | 28, 39 | eqtr4i 2763 |
. . 3
β’ dom
(glbββ*π ) = π«
β* |
41 | 24, 40 | pm3.2i 471 |
. 2
β’ (dom
(lubββ*π ) = π«
β* β§ dom
(glbββ*π ) = π«
β*) |
42 | 4, 6, 25 | isclat 18449 |
. 2
β’
(β*π β CLat β
(β*π β Poset β§ (dom
(lubββ*π ) = π«
β* β§ dom
(glbββ*π ) = π«
β*))) |
43 | 3, 41, 42 | mpbir2an 709 |
1
β’
β*π β CLat |