| Step | Hyp | Ref
| Expression |
| 1 | | xrstos 33012 |
. . 3
⊢
ℝ*𝑠 ∈ Toset |
| 2 | | tospos 18465 |
. . 3
⊢
(ℝ*𝑠 ∈ Toset →
ℝ*𝑠 ∈ Poset) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢
ℝ*𝑠 ∈ Poset |
| 4 | | xrsbas 21396 |
. . . . . 6
⊢
ℝ* =
(Base‘ℝ*𝑠) |
| 5 | | xrsle 21400 |
. . . . . 6
⊢ ≤ =
(le‘ℝ*𝑠) |
| 6 | | eqid 2737 |
. . . . . 6
⊢
(lub‘ℝ*𝑠) =
(lub‘ℝ*𝑠) |
| 7 | | biid 261 |
. . . . . 6
⊢
((∀𝑏 ∈
𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))) |
| 8 | 4, 5, 6, 7, 2 | lubdm 18396 |
. . . . 5
⊢
(ℝ*𝑠 ∈ Toset → dom
(lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣
∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))}) |
| 9 | 1, 8 | ax-mp 5 |
. . . 4
⊢ dom
(lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣
∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))} |
| 10 | | rabid2 3470 |
. . . . 5
⊢
(𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣
∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))} ↔ ∀𝑥 ∈ 𝒫
ℝ*∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))) |
| 11 | | velpw 4605 |
. . . . . 6
⊢ (𝑥 ∈ 𝒫
ℝ* ↔ 𝑥 ⊆
ℝ*) |
| 12 | | xrltso 13183 |
. . . . . . . . 9
⊢ < Or
ℝ* |
| 13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 ⊆ ℝ*
→ < Or ℝ*) |
| 14 | | xrsupss 13351 |
. . . . . . . 8
⊢ (𝑥 ⊆ ℝ*
→ ∃𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏 < 𝑑))) |
| 15 | 13, 14 | supeu 9494 |
. . . . . . 7
⊢ (𝑥 ⊆ ℝ*
→ ∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏 < 𝑑))) |
| 16 | | xrslt 33009 |
. . . . . . . . 9
⊢ < =
(lt‘ℝ*𝑠) |
| 17 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ⊆ ℝ*
→ ℝ*𝑠 ∈ Toset) |
| 18 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ⊆ ℝ*
→ 𝑥 ⊆
ℝ*) |
| 19 | 4, 16, 17, 18, 5 | toslublem 32962 |
. . . . . . . 8
⊢ ((𝑥 ⊆ ℝ*
∧ 𝑎 ∈
ℝ*) → ((∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ (∀𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏 < 𝑑)))) |
| 20 | 19 | reubidva 3396 |
. . . . . . 7
⊢ (𝑥 ⊆ ℝ*
→ (∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏 < 𝑑)))) |
| 21 | 15, 20 | mpbird 257 |
. . . . . 6
⊢ (𝑥 ⊆ ℝ*
→ ∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))) |
| 22 | 11, 21 | sylbi 217 |
. . . . 5
⊢ (𝑥 ∈ 𝒫
ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))) |
| 23 | 10, 22 | mprgbir 3068 |
. . . 4
⊢ 𝒫
ℝ* = {𝑥
∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐))} |
| 24 | 9, 23 | eqtr4i 2768 |
. . 3
⊢ dom
(lub‘ℝ*𝑠) = 𝒫
ℝ* |
| 25 | | eqid 2737 |
. . . . . 6
⊢
(glb‘ℝ*𝑠) =
(glb‘ℝ*𝑠) |
| 26 | | biid 261 |
. . . . . 6
⊢
((∀𝑏 ∈
𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))) |
| 27 | 4, 5, 25, 26, 2 | glbdm 18409 |
. . . . 5
⊢
(ℝ*𝑠 ∈ Toset → dom
(glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣
∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))}) |
| 28 | 1, 27 | ax-mp 5 |
. . . 4
⊢ dom
(glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣
∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))} |
| 29 | | rabid2 3470 |
. . . . 5
⊢
(𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣
∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))} ↔ ∀𝑥 ∈ 𝒫
ℝ*∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))) |
| 30 | | cnvso 6308 |
. . . . . . . . . 10
⊢ ( < Or
ℝ* ↔ ◡ < Or
ℝ*) |
| 31 | 12, 30 | mpbi 230 |
. . . . . . . . 9
⊢ ◡ < Or
ℝ* |
| 32 | 31 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 ⊆ ℝ*
→ ◡ < Or
ℝ*) |
| 33 | | xrinfmss2 13353 |
. . . . . . . 8
⊢ (𝑥 ⊆ ℝ*
→ ∃𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 ¬ 𝑎◡
< 𝑏 ∧ ∀𝑏 ∈ ℝ*
(𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏◡
< 𝑑))) |
| 34 | 32, 33 | supeu 9494 |
. . . . . . 7
⊢ (𝑥 ⊆ ℝ*
→ ∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 ¬ 𝑎◡
< 𝑏 ∧ ∀𝑏 ∈ ℝ*
(𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏◡
< 𝑑))) |
| 35 | 4, 16, 17, 18, 5 | tosglblem 32964 |
. . . . . . . 8
⊢ ((𝑥 ⊆ ℝ*
∧ 𝑎 ∈
ℝ*) → ((∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝑥 ¬ 𝑎◡
< 𝑏 ∧ ∀𝑏 ∈ ℝ*
(𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏◡
< 𝑑)))) |
| 36 | 35 | reubidva 3396 |
. . . . . . 7
⊢ (𝑥 ⊆ ℝ*
→ (∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 ¬ 𝑎◡
< 𝑏 ∧ ∀𝑏 ∈ ℝ*
(𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝑥 𝑏◡
< 𝑑)))) |
| 37 | 34, 36 | mpbird 257 |
. . . . . 6
⊢ (𝑥 ⊆ ℝ*
→ ∃!𝑎 ∈
ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))) |
| 38 | 11, 37 | sylbi 217 |
. . . . 5
⊢ (𝑥 ∈ 𝒫
ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))) |
| 39 | 29, 38 | mprgbir 3068 |
. . . 4
⊢ 𝒫
ℝ* = {𝑥
∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎))} |
| 40 | 28, 39 | eqtr4i 2768 |
. . 3
⊢ dom
(glb‘ℝ*𝑠) = 𝒫
ℝ* |
| 41 | 24, 40 | pm3.2i 470 |
. 2
⊢ (dom
(lub‘ℝ*𝑠) = 𝒫
ℝ* ∧ dom
(glb‘ℝ*𝑠) = 𝒫
ℝ*) |
| 42 | 4, 6, 25 | isclat 18545 |
. 2
⊢
(ℝ*𝑠 ∈ CLat ↔
(ℝ*𝑠 ∈ Poset ∧ (dom
(lub‘ℝ*𝑠) = 𝒫
ℝ* ∧ dom
(glb‘ℝ*𝑠) = 𝒫
ℝ*))) |
| 43 | 3, 41, 42 | mpbir2an 711 |
1
⊢
ℝ*𝑠 ∈ CLat |