Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsclat Structured version   Visualization version   GIF version

Theorem xrsclat 31008
Description: The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.)
Assertion
Ref Expression
xrsclat *𝑠 ∈ CLat

Proof of Theorem xrsclat
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrstos 31007 . . 3 *𝑠 ∈ Toset
2 tospos 17926 . . 3 (ℝ*𝑠 ∈ Toset → ℝ*𝑠 ∈ Poset)
31, 2ax-mp 5 . 2 *𝑠 ∈ Poset
4 xrsbas 20379 . . . . . 6 * = (Base‘ℝ*𝑠)
5 xrsle 20383 . . . . . 6 ≤ = (le‘ℝ*𝑠)
6 eqid 2737 . . . . . 6 (lub‘ℝ*𝑠) = (lub‘ℝ*𝑠)
7 biid 264 . . . . . 6 ((∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
84, 5, 6, 7, 2lubdm 17857 . . . . 5 (ℝ*𝑠 ∈ Toset → dom (lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))})
91, 8ax-mp 5 . . . 4 dom (lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))}
10 rabid2 3293 . . . . 5 (𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))} ↔ ∀𝑥 ∈ 𝒫 ℝ*∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
11 velpw 4518 . . . . . 6 (𝑥 ∈ 𝒫 ℝ*𝑥 ⊆ ℝ*)
12 xrltso 12731 . . . . . . . . 9 < Or ℝ*
1312a1i 11 . . . . . . . 8 (𝑥 ⊆ ℝ* → < Or ℝ*)
14 xrsupss 12899 . . . . . . . 8 (𝑥 ⊆ ℝ* → ∃𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
1513, 14supeu 9070 . . . . . . 7 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
16 xrslt 31004 . . . . . . . . 9 < = (lt‘ℝ*𝑠)
171a1i 11 . . . . . . . . 9 (𝑥 ⊆ ℝ* → ℝ*𝑠 ∈ Toset)
18 id 22 . . . . . . . . 9 (𝑥 ⊆ ℝ*𝑥 ⊆ ℝ*)
194, 16, 17, 18, 5toslublem 30969 . . . . . . . 8 ((𝑥 ⊆ ℝ*𝑎 ∈ ℝ*) → ((∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
2019reubidva 3300 . . . . . . 7 (𝑥 ⊆ ℝ* → (∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
2115, 20mpbird 260 . . . . . 6 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
2211, 21sylbi 220 . . . . 5 (𝑥 ∈ 𝒫 ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
2310, 22mprgbir 3076 . . . 4 𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))}
249, 23eqtr4i 2768 . . 3 dom (lub‘ℝ*𝑠) = 𝒫 ℝ*
25 eqid 2737 . . . . . 6 (glb‘ℝ*𝑠) = (glb‘ℝ*𝑠)
26 biid 264 . . . . . 6 ((∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
274, 5, 25, 26, 2glbdm 17870 . . . . 5 (ℝ*𝑠 ∈ Toset → dom (glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))})
281, 27ax-mp 5 . . . 4 dom (glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))}
29 rabid2 3293 . . . . 5 (𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))} ↔ ∀𝑥 ∈ 𝒫 ℝ*∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
30 cnvso 6151 . . . . . . . . . 10 ( < Or ℝ* < Or ℝ*)
3112, 30mpbi 233 . . . . . . . . 9 < Or ℝ*
3231a1i 11 . . . . . . . 8 (𝑥 ⊆ ℝ* < Or ℝ*)
33 xrinfmss2 12901 . . . . . . . 8 (𝑥 ⊆ ℝ* → ∃𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
3432, 33supeu 9070 . . . . . . 7 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
354, 16, 17, 18, 5tosglblem 30971 . . . . . . . 8 ((𝑥 ⊆ ℝ*𝑎 ∈ ℝ*) → ((∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
3635reubidva 3300 . . . . . . 7 (𝑥 ⊆ ℝ* → (∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
3734, 36mpbird 260 . . . . . 6 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
3811, 37sylbi 220 . . . . 5 (𝑥 ∈ 𝒫 ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
3929, 38mprgbir 3076 . . . 4 𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))}
4028, 39eqtr4i 2768 . . 3 dom (glb‘ℝ*𝑠) = 𝒫 ℝ*
4124, 40pm3.2i 474 . 2 (dom (lub‘ℝ*𝑠) = 𝒫 ℝ* ∧ dom (glb‘ℝ*𝑠) = 𝒫 ℝ*)
424, 6, 25isclat 18006 . 2 (ℝ*𝑠 ∈ CLat ↔ (ℝ*𝑠 ∈ Poset ∧ (dom (lub‘ℝ*𝑠) = 𝒫 ℝ* ∧ dom (glb‘ℝ*𝑠) = 𝒫 ℝ*)))
433, 41, 42mpbir2an 711 1 *𝑠 ∈ CLat
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  ∃!wreu 3063  {crab 3065  wss 3866  𝒫 cpw 4513   class class class wbr 5053   Or wor 5467  ccnv 5550  dom cdm 5551  cfv 6380  *cxr 10866   < clt 10867  cle 10868  *𝑠cxrs 17005  Posetcpo 17814  lubclub 17816  glbcglb 17817  Tosetctos 17922  CLatccla 18004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-tset 16821  df-ple 16822  df-ds 16824  df-xrs 17007  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-toset 17923  df-clat 18005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator