Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsclat Structured version   Visualization version   GIF version

Theorem xrsclat 32941
Description: The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.)
Assertion
Ref Expression
xrsclat *𝑠 ∈ CLat

Proof of Theorem xrsclat
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrstos 32940 . . 3 *𝑠 ∈ Toset
2 tospos 18417 . . 3 (ℝ*𝑠 ∈ Toset → ℝ*𝑠 ∈ Poset)
31, 2ax-mp 5 . 2 *𝑠 ∈ Poset
4 xrsbas 21333 . . . . . 6 * = (Base‘ℝ*𝑠)
5 xrsle 21337 . . . . . 6 ≤ = (le‘ℝ*𝑠)
6 eqid 2734 . . . . . 6 (lub‘ℝ*𝑠) = (lub‘ℝ*𝑠)
7 biid 261 . . . . . 6 ((∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
84, 5, 6, 7, 2lubdm 18348 . . . . 5 (ℝ*𝑠 ∈ Toset → dom (lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))})
91, 8ax-mp 5 . . . 4 dom (lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))}
10 rabid2 3447 . . . . 5 (𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))} ↔ ∀𝑥 ∈ 𝒫 ℝ*∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
11 velpw 4578 . . . . . 6 (𝑥 ∈ 𝒫 ℝ*𝑥 ⊆ ℝ*)
12 xrltso 13150 . . . . . . . . 9 < Or ℝ*
1312a1i 11 . . . . . . . 8 (𝑥 ⊆ ℝ* → < Or ℝ*)
14 xrsupss 13318 . . . . . . . 8 (𝑥 ⊆ ℝ* → ∃𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
1513, 14supeu 9461 . . . . . . 7 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
16 xrslt 32937 . . . . . . . . 9 < = (lt‘ℝ*𝑠)
171a1i 11 . . . . . . . . 9 (𝑥 ⊆ ℝ* → ℝ*𝑠 ∈ Toset)
18 id 22 . . . . . . . . 9 (𝑥 ⊆ ℝ*𝑥 ⊆ ℝ*)
194, 16, 17, 18, 5toslublem 32890 . . . . . . . 8 ((𝑥 ⊆ ℝ*𝑎 ∈ ℝ*) → ((∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
2019reubidva 3373 . . . . . . 7 (𝑥 ⊆ ℝ* → (∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
2115, 20mpbird 257 . . . . . 6 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
2211, 21sylbi 217 . . . . 5 (𝑥 ∈ 𝒫 ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
2310, 22mprgbir 3057 . . . 4 𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))}
249, 23eqtr4i 2760 . . 3 dom (lub‘ℝ*𝑠) = 𝒫 ℝ*
25 eqid 2734 . . . . . 6 (glb‘ℝ*𝑠) = (glb‘ℝ*𝑠)
26 biid 261 . . . . . 6 ((∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
274, 5, 25, 26, 2glbdm 18361 . . . . 5 (ℝ*𝑠 ∈ Toset → dom (glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))})
281, 27ax-mp 5 . . . 4 dom (glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))}
29 rabid2 3447 . . . . 5 (𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))} ↔ ∀𝑥 ∈ 𝒫 ℝ*∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
30 cnvso 6275 . . . . . . . . . 10 ( < Or ℝ* < Or ℝ*)
3112, 30mpbi 230 . . . . . . . . 9 < Or ℝ*
3231a1i 11 . . . . . . . 8 (𝑥 ⊆ ℝ* < Or ℝ*)
33 xrinfmss2 13320 . . . . . . . 8 (𝑥 ⊆ ℝ* → ∃𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
3432, 33supeu 9461 . . . . . . 7 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
354, 16, 17, 18, 5tosglblem 32892 . . . . . . . 8 ((𝑥 ⊆ ℝ*𝑎 ∈ ℝ*) → ((∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
3635reubidva 3373 . . . . . . 7 (𝑥 ⊆ ℝ* → (∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
3734, 36mpbird 257 . . . . . 6 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
3811, 37sylbi 217 . . . . 5 (𝑥 ∈ 𝒫 ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
3929, 38mprgbir 3057 . . . 4 𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))}
4028, 39eqtr4i 2760 . . 3 dom (glb‘ℝ*𝑠) = 𝒫 ℝ*
4124, 40pm3.2i 470 . 2 (dom (lub‘ℝ*𝑠) = 𝒫 ℝ* ∧ dom (glb‘ℝ*𝑠) = 𝒫 ℝ*)
424, 6, 25isclat 18497 . 2 (ℝ*𝑠 ∈ CLat ↔ (ℝ*𝑠 ∈ Poset ∧ (dom (lub‘ℝ*𝑠) = 𝒫 ℝ* ∧ dom (glb‘ℝ*𝑠) = 𝒫 ℝ*)))
433, 41, 42mpbir2an 711 1 *𝑠 ∈ CLat
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  ∃!wreu 3355  {crab 3413  wss 3924  𝒫 cpw 4573   class class class wbr 5117   Or wor 5558  ccnv 5651  dom cdm 5652  cfv 6528  *cxr 11261   < clt 11262  cle 11263  *𝑠cxrs 17501  Posetcpo 18306  lubclub 18308  glbcglb 18309  Tosetctos 18413  CLatccla 18495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-slot 17188  df-ndx 17200  df-base 17216  df-plusg 17271  df-mulr 17272  df-tset 17277  df-ple 17278  df-ds 17280  df-xrs 17503  df-proset 18293  df-poset 18312  df-plt 18327  df-lub 18343  df-glb 18344  df-toset 18414  df-clat 18496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator