| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 2 | | eqid 2736 |
. . . . . . 7
⊢
(join‘𝐾) =
(join‘𝐾) |
| 3 | | simpl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
𝐾 ∈
Poset) |
| 4 | 1, 2, 3 | joindmss 18394 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(join‘𝐾) ⊆
((Base‘𝐾) ×
(Base‘𝐾))) |
| 5 | | relxp 5677 |
. . . . . . . 8
⊢ Rel
((Base‘𝐾) ×
(Base‘𝐾)) |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) → Rel
((Base‘𝐾) ×
(Base‘𝐾))) |
| 7 | | opelxp 5695 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) |
| 8 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 9 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 10 | 8, 9 | prss 4801 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾)) |
| 11 | 7, 10 | sylbb 219 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ⊆ (Base‘𝐾)) |
| 12 | | prex 5412 |
. . . . . . . . . . . 12
⊢ {𝑥, 𝑦} ∈ V |
| 13 | 12 | elpw 4584 |
. . . . . . . . . . 11
⊢ ({𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾)) |
| 14 | 11, 13 | sylibr 234 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)) |
| 15 | | eleq2 2824 |
. . . . . . . . . 10
⊢ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) →
({𝑥, 𝑦} ∈ dom (lub‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾))) |
| 16 | 14, 15 | imbitrrid 246 |
. . . . . . . . 9
⊢ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
| 17 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
| 18 | | eqid 2736 |
. . . . . . . . 9
⊢
(lub‘𝐾) =
(lub‘𝐾) |
| 19 | 8 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑥 ∈
V) |
| 20 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑦 ∈
V) |
| 21 | 18, 2, 3, 19, 20 | joindef 18391 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ dom
(join‘𝐾) ↔
{𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
| 22 | 17, 21 | sylibrd 259 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → 〈𝑥, 𝑦〉 ∈ dom (join‘𝐾))) |
| 23 | 6, 22 | relssdv 5772 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
((Base‘𝐾) ×
(Base‘𝐾)) ⊆ dom
(join‘𝐾)) |
| 24 | 4, 23 | eqssd 3981 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))) |
| 25 | 24 | ex 412 |
. . . 4
⊢ (𝐾 ∈ Poset → (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) → dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)))) |
| 26 | | eqid 2736 |
. . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 27 | | simpl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
𝐾 ∈
Poset) |
| 28 | 1, 26, 27 | meetdmss 18408 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(meet‘𝐾) ⊆
((Base‘𝐾) ×
(Base‘𝐾))) |
| 29 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → Rel
((Base‘𝐾) ×
(Base‘𝐾))) |
| 30 | | eleq2 2824 |
. . . . . . . . . 10
⊢ (dom
(glb‘𝐾) = 𝒫
(Base‘𝐾) →
({𝑥, 𝑦} ∈ dom (glb‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾))) |
| 31 | 14, 30 | imbitrrid 246 |
. . . . . . . . 9
⊢ (dom
(glb‘𝐾) = 𝒫
(Base‘𝐾) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
| 32 | 31 | adantl 481 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
| 33 | | eqid 2736 |
. . . . . . . . 9
⊢
(glb‘𝐾) =
(glb‘𝐾) |
| 34 | 8 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑥 ∈
V) |
| 35 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑦 ∈
V) |
| 36 | 33, 26, 27, 34, 35 | meetdef 18405 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ dom
(meet‘𝐾) ↔
{𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
| 37 | 32, 36 | sylibrd 259 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → 〈𝑥, 𝑦〉 ∈ dom (meet‘𝐾))) |
| 38 | 29, 37 | relssdv 5772 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
((Base‘𝐾) ×
(Base‘𝐾)) ⊆ dom
(meet‘𝐾)) |
| 39 | 28, 38 | eqssd 3981 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))) |
| 40 | 39 | ex 412 |
. . . 4
⊢ (𝐾 ∈ Poset → (dom
(glb‘𝐾) = 𝒫
(Base‘𝐾) → dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)))) |
| 41 | 25, 40 | anim12d 609 |
. . 3
⊢ (𝐾 ∈ Poset → ((dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))))) |
| 42 | 41 | imdistani 568 |
. 2
⊢ ((𝐾 ∈ Poset ∧ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾))) →
(𝐾 ∈ Poset ∧ (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))))) |
| 43 | 1, 18, 33 | isclat 18515 |
. 2
⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)))) |
| 44 | 1, 2, 26 | islat 18448 |
. 2
⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))))) |
| 45 | 42, 43, 44 | 3imtr4i 292 |
1
⊢ (𝐾 ∈ CLat → 𝐾 ∈ Lat) |