MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatl Structured version   Visualization version   GIF version

Theorem clatl 18523
Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5779 to shorten proof and eliminate joindmss 18394 and meetdmss 18408?
Assertion
Ref Expression
clatl (𝐾 ∈ CLat → 𝐾 ∈ Lat)

Proof of Theorem clatl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2736 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
3 simpl 482 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝐾 ∈ Poset)
41, 2, 3joindmss 18394 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → dom (join‘𝐾) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
5 relxp 5677 . . . . . . . 8 Rel ((Base‘𝐾) × (Base‘𝐾))
65a1i 11 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → Rel ((Base‘𝐾) × (Base‘𝐾)))
7 opelxp 5695 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)))
8 vex 3468 . . . . . . . . . . . . 13 𝑥 ∈ V
9 vex 3468 . . . . . . . . . . . . 13 𝑦 ∈ V
108, 9prss 4801 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
117, 10sylbb 219 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
12 prex 5412 . . . . . . . . . . . 12 {𝑥, 𝑦} ∈ V
1312elpw 4584 . . . . . . . . . . 11 ({𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
1411, 13sylibr 234 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾))
15 eleq2 2824 . . . . . . . . . 10 (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)))
1614, 15imbitrrid 246 . . . . . . . . 9 (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
1716adantl 481 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
18 eqid 2736 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
198a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑥 ∈ V)
209a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑦 ∈ V)
2118, 2, 3, 19, 20joindef 18391 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ dom (join‘𝐾) ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
2217, 21sylibrd 259 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → ⟨𝑥, 𝑦⟩ ∈ dom (join‘𝐾)))
236, 22relssdv 5772 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → ((Base‘𝐾) × (Base‘𝐾)) ⊆ dom (join‘𝐾))
244, 23eqssd 3981 . . . . 5 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
2524ex 412 . . . 4 (𝐾 ∈ Poset → (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
26 eqid 2736 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
27 simpl 482 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝐾 ∈ Poset)
281, 26, 27meetdmss 18408 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → dom (meet‘𝐾) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
295a1i 11 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → Rel ((Base‘𝐾) × (Base‘𝐾)))
30 eleq2 2824 . . . . . . . . . 10 (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)))
3114, 30imbitrrid 246 . . . . . . . . 9 (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3231adantl 481 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
33 eqid 2736 . . . . . . . . 9 (glb‘𝐾) = (glb‘𝐾)
348a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑥 ∈ V)
359a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑦 ∈ V)
3633, 26, 27, 34, 35meetdef 18405 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ dom (meet‘𝐾) ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3732, 36sylibrd 259 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → ⟨𝑥, 𝑦⟩ ∈ dom (meet‘𝐾)))
3829, 37relssdv 5772 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → ((Base‘𝐾) × (Base‘𝐾)) ⊆ dom (meet‘𝐾))
3928, 38eqssd 3981 . . . . 5 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
4039ex 412 . . . 4 (𝐾 ∈ Poset → (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
4125, 40anim12d 609 . . 3 (𝐾 ∈ Poset → ((dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
4241imdistani 568 . 2 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))) → (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
431, 18, 33isclat 18515 . 2 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))))
441, 2, 26islat 18448 . 2 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
4542, 43, 443imtr4i 292 1 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  𝒫 cpw 4580  {cpr 4608  cop 4612   × cxp 5657  dom cdm 5659  Rel wrel 5664  cfv 6536  Basecbs 17233  Posetcpo 18324  lubclub 18326  glbcglb 18327  joincjn 18328  meetcmee 18329  Latclat 18446  CLatccla 18513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-oprab 7414  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-lat 18447  df-clat 18514
This theorem is referenced by:  lubel  18529  lubun  18530  clatleglb  18533  topdlat  48958
  Copyright terms: Public domain W3C validator