MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatl Structured version   Visualization version   GIF version

Theorem clatl 18397
Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5751 to shorten proof and eliminate joindmss 18268 and meetdmss 18282?
Assertion
Ref Expression
clatl (𝐾 ∈ CLat → 𝐾 ∈ Lat)

Proof of Theorem clatl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2736 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
3 simpl 483 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝐾 ∈ Poset)
41, 2, 3joindmss 18268 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → dom (join‘𝐾) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
5 relxp 5651 . . . . . . . 8 Rel ((Base‘𝐾) × (Base‘𝐾))
65a1i 11 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → Rel ((Base‘𝐾) × (Base‘𝐾)))
7 opelxp 5669 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)))
8 vex 3449 . . . . . . . . . . . . 13 𝑥 ∈ V
9 vex 3449 . . . . . . . . . . . . 13 𝑦 ∈ V
108, 9prss 4780 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
117, 10sylbb 218 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
12 prex 5389 . . . . . . . . . . . 12 {𝑥, 𝑦} ∈ V
1312elpw 4564 . . . . . . . . . . 11 ({𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
1411, 13sylibr 233 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾))
15 eleq2 2826 . . . . . . . . . 10 (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)))
1614, 15syl5ibr 245 . . . . . . . . 9 (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
1716adantl 482 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
18 eqid 2736 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
198a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑥 ∈ V)
209a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑦 ∈ V)
2118, 2, 3, 19, 20joindef 18265 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ dom (join‘𝐾) ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
2217, 21sylibrd 258 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → ⟨𝑥, 𝑦⟩ ∈ dom (join‘𝐾)))
236, 22relssdv 5744 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → ((Base‘𝐾) × (Base‘𝐾)) ⊆ dom (join‘𝐾))
244, 23eqssd 3961 . . . . 5 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
2524ex 413 . . . 4 (𝐾 ∈ Poset → (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
26 eqid 2736 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
27 simpl 483 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝐾 ∈ Poset)
281, 26, 27meetdmss 18282 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → dom (meet‘𝐾) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
295a1i 11 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → Rel ((Base‘𝐾) × (Base‘𝐾)))
30 eleq2 2826 . . . . . . . . . 10 (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)))
3114, 30syl5ibr 245 . . . . . . . . 9 (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3231adantl 482 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
33 eqid 2736 . . . . . . . . 9 (glb‘𝐾) = (glb‘𝐾)
348a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑥 ∈ V)
359a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑦 ∈ V)
3633, 26, 27, 34, 35meetdef 18279 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ dom (meet‘𝐾) ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3732, 36sylibrd 258 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → ⟨𝑥, 𝑦⟩ ∈ dom (meet‘𝐾)))
3829, 37relssdv 5744 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → ((Base‘𝐾) × (Base‘𝐾)) ⊆ dom (meet‘𝐾))
3928, 38eqssd 3961 . . . . 5 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
4039ex 413 . . . 4 (𝐾 ∈ Poset → (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
4125, 40anim12d 609 . . 3 (𝐾 ∈ Poset → ((dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
4241imdistani 569 . 2 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))) → (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
431, 18, 33isclat 18389 . 2 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))))
441, 2, 26islat 18322 . 2 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
4542, 43, 443imtr4i 291 1 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  wss 3910  𝒫 cpw 4560  {cpr 4588  cop 4592   × cxp 5631  dom cdm 5633  Rel wrel 5638  cfv 6496  Basecbs 17083  Posetcpo 18196  lubclub 18198  glbcglb 18199  joincjn 18200  meetcmee 18201  Latclat 18320  CLatccla 18387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-oprab 7361  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-lat 18321  df-clat 18388
This theorem is referenced by:  lubel  18403  lubun  18404  clatleglb  18407  topdlat  47019
  Copyright terms: Public domain W3C validator