Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | eqid 2738 |
. . . . . . 7
⊢
(join‘𝐾) =
(join‘𝐾) |
3 | | simpl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
𝐾 ∈
Poset) |
4 | 1, 2, 3 | joindmss 18012 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(join‘𝐾) ⊆
((Base‘𝐾) ×
(Base‘𝐾))) |
5 | | relxp 5598 |
. . . . . . . 8
⊢ Rel
((Base‘𝐾) ×
(Base‘𝐾)) |
6 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) → Rel
((Base‘𝐾) ×
(Base‘𝐾))) |
7 | | opelxp 5616 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) |
8 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
9 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
10 | 8, 9 | prss 4750 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾)) |
11 | 7, 10 | sylbb 218 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ⊆ (Base‘𝐾)) |
12 | | prex 5350 |
. . . . . . . . . . . 12
⊢ {𝑥, 𝑦} ∈ V |
13 | 12 | elpw 4534 |
. . . . . . . . . . 11
⊢ ({𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾)) |
14 | 11, 13 | sylibr 233 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)) |
15 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) →
({𝑥, 𝑦} ∈ dom (lub‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾))) |
16 | 14, 15 | syl5ibr 245 |
. . . . . . . . 9
⊢ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
17 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
18 | | eqid 2738 |
. . . . . . . . 9
⊢
(lub‘𝐾) =
(lub‘𝐾) |
19 | 8 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑥 ∈
V) |
20 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑦 ∈
V) |
21 | 18, 2, 3, 19, 20 | joindef 18009 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ dom
(join‘𝐾) ↔
{𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
22 | 17, 21 | sylibrd 258 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → 〈𝑥, 𝑦〉 ∈ dom (join‘𝐾))) |
23 | 6, 22 | relssdv 5687 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) →
((Base‘𝐾) ×
(Base‘𝐾)) ⊆ dom
(join‘𝐾)) |
24 | 4, 23 | eqssd 3934 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ dom
(lub‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))) |
25 | 24 | ex 412 |
. . . 4
⊢ (𝐾 ∈ Poset → (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) → dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)))) |
26 | | eqid 2738 |
. . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) |
27 | | simpl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
𝐾 ∈
Poset) |
28 | 1, 26, 27 | meetdmss 18026 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(meet‘𝐾) ⊆
((Base‘𝐾) ×
(Base‘𝐾))) |
29 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → Rel
((Base‘𝐾) ×
(Base‘𝐾))) |
30 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (dom
(glb‘𝐾) = 𝒫
(Base‘𝐾) →
({𝑥, 𝑦} ∈ dom (glb‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾))) |
31 | 14, 30 | syl5ibr 245 |
. . . . . . . . 9
⊢ (dom
(glb‘𝐾) = 𝒫
(Base‘𝐾) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
32 | 31 | adantl 481 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
33 | | eqid 2738 |
. . . . . . . . 9
⊢
(glb‘𝐾) =
(glb‘𝐾) |
34 | 8 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑥 ∈
V) |
35 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
𝑦 ∈
V) |
36 | 33, 26, 27, 34, 35 | meetdef 18023 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ dom
(meet‘𝐾) ↔
{𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
37 | 32, 36 | sylibrd 258 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
(〈𝑥, 𝑦〉 ∈ ((Base‘𝐾) × (Base‘𝐾)) → 〈𝑥, 𝑦〉 ∈ dom (meet‘𝐾))) |
38 | 29, 37 | relssdv 5687 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) →
((Base‘𝐾) ×
(Base‘𝐾)) ⊆ dom
(meet‘𝐾)) |
39 | 28, 38 | eqssd 3934 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))) |
40 | 39 | ex 412 |
. . . 4
⊢ (𝐾 ∈ Poset → (dom
(glb‘𝐾) = 𝒫
(Base‘𝐾) → dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)))) |
41 | 25, 40 | anim12d 608 |
. . 3
⊢ (𝐾 ∈ Poset → ((dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)) → (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))))) |
42 | 41 | imdistani 568 |
. 2
⊢ ((𝐾 ∈ Poset ∧ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾))) →
(𝐾 ∈ Poset ∧ (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))))) |
43 | 1, 18, 33 | isclat 18133 |
. 2
⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom
(lub‘𝐾) = 𝒫
(Base‘𝐾) ∧ dom
(glb‘𝐾) = 𝒫
(Base‘𝐾)))) |
44 | 1, 2, 26 | islat 18066 |
. 2
⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))))) |
45 | 42, 43, 44 | 3imtr4i 291 |
1
⊢ (𝐾 ∈ CLat → 𝐾 ∈ Lat) |