Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oduclatb | Structured version Visualization version GIF version |
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduclatb.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduclatb | ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝑂 ∈ CLat → 𝑂 ∈ V) | |
2 | noel 4264 | . . . . 5 ⊢ ¬ ((lub‘∅)‘∅) ∈ ∅ | |
3 | ssid 3943 | . . . . . 6 ⊢ ∅ ⊆ ∅ | |
4 | base0 16917 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2738 | . . . . . . 7 ⊢ (lub‘∅) = (lub‘∅) | |
6 | 4, 5 | clatlubcl 18221 | . . . . . 6 ⊢ ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅) |
7 | 3, 6 | mpan2 688 | . . . . 5 ⊢ (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅) |
8 | 2, 7 | mto 196 | . . . 4 ⊢ ¬ ∅ ∈ CLat |
9 | oduclatb.d | . . . . . 6 ⊢ 𝐷 = (ODual‘𝑂) | |
10 | fvprc 6766 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
11 | 9, 10 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
12 | 11 | eleq1d 2823 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat)) |
13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat) |
14 | 13 | con4i 114 | . 2 ⊢ (𝐷 ∈ CLat → 𝑂 ∈ V) |
15 | 9 | oduposb 18047 | . . . 4 ⊢ (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
16 | ancom 461 | . . . . 5 ⊢ ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂))) | |
17 | eqid 2738 | . . . . . . . . 9 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
18 | 9, 17 | odulub 18125 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
19 | 18 | dmeqd 5814 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷)) |
20 | 19 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂))) |
21 | eqid 2738 | . . . . . . . . 9 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
22 | 9, 21 | oduglb 18127 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
23 | 22 | dmeqd 5814 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷)) |
24 | 23 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))) |
25 | 20, 24 | anbi12d 631 | . . . . 5 ⊢ (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
26 | 16, 25 | bitrid 282 | . . . 4 ⊢ (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
27 | 15, 26 | anbi12d 631 | . . 3 ⊢ (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))) |
28 | eqid 2738 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
29 | 28, 21, 17 | isclat 18218 | . . 3 ⊢ (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)))) |
30 | 9, 28 | odubas 18009 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝐷) |
31 | eqid 2738 | . . . 4 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
32 | eqid 2738 | . . . 4 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
33 | 30, 31, 32 | isclat 18218 | . . 3 ⊢ (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
34 | 27, 29, 33 | 3bitr4g 314 | . 2 ⊢ (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)) |
35 | 1, 14, 34 | pm5.21nii 380 | 1 ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 dom cdm 5589 ‘cfv 6433 Basecbs 16912 ODualcodu 18004 Posetcpo 18025 lubclub 18027 glbcglb 18028 CLatccla 18216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12438 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ple 16982 df-odu 18005 df-proset 18013 df-poset 18031 df-lub 18064 df-glb 18065 df-clat 18217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |