MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduclatb Structured version   Visualization version   GIF version

Theorem oduclatb 17967
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
oduclatb.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
oduclatb (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)

Proof of Theorem oduclatb
StepHypRef Expression
1 elex 3416 . 2 (𝑂 ∈ CLat → 𝑂 ∈ V)
2 noel 4231 . . . . 5 ¬ ((lub‘∅)‘∅) ∈ ∅
3 ssid 3909 . . . . . 6 ∅ ⊆ ∅
4 base0 16726 . . . . . . 7 ∅ = (Base‘∅)
5 eqid 2736 . . . . . . 7 (lub‘∅) = (lub‘∅)
64, 5clatlubcl 17963 . . . . . 6 ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅)
73, 6mpan2 691 . . . . 5 (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅)
82, 7mto 200 . . . 4 ¬ ∅ ∈ CLat
9 oduclatb.d . . . . . 6 𝐷 = (ODual‘𝑂)
10 fvprc 6687 . . . . . 6 𝑂 ∈ V → (ODual‘𝑂) = ∅)
119, 10syl5eq 2783 . . . . 5 𝑂 ∈ V → 𝐷 = ∅)
1211eleq1d 2815 . . . 4 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat))
138, 12mtbiri 330 . . 3 𝑂 ∈ V → ¬ 𝐷 ∈ CLat)
1413con4i 114 . 2 (𝐷 ∈ CLat → 𝑂 ∈ V)
159oduposb 17789 . . . 4 (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))
16 ancom 464 . . . . 5 ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)))
17 eqid 2736 . . . . . . . . 9 (glb‘𝑂) = (glb‘𝑂)
189, 17odulub 17867 . . . . . . . 8 (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷))
1918dmeqd 5759 . . . . . . 7 (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷))
2019eqeq1d 2738 . . . . . 6 (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂)))
21 eqid 2736 . . . . . . . . 9 (lub‘𝑂) = (lub‘𝑂)
229, 21oduglb 17869 . . . . . . . 8 (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷))
2322dmeqd 5759 . . . . . . 7 (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷))
2423eqeq1d 2738 . . . . . 6 (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))
2520, 24anbi12d 634 . . . . 5 (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2616, 25syl5bb 286 . . . 4 (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2715, 26anbi12d 634 . . 3 (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))))
28 eqid 2736 . . . 4 (Base‘𝑂) = (Base‘𝑂)
2928, 21, 17isclat 17960 . . 3 (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))))
309, 28odubas 17753 . . . 4 (Base‘𝑂) = (Base‘𝐷)
31 eqid 2736 . . . 4 (lub‘𝐷) = (lub‘𝐷)
32 eqid 2736 . . . 4 (glb‘𝐷) = (glb‘𝐷)
3330, 31, 32isclat 17960 . . 3 (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
3427, 29, 333bitr4g 317 . 2 (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat))
351, 14, 34pm5.21nii 383 1 (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  wss 3853  c0 4223  𝒫 cpw 4499  dom cdm 5536  cfv 6358  Basecbs 16666  ODualcodu 17748  Posetcpo 17768  lubclub 17770  glbcglb 17771  CLatccla 17958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-dec 12259  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ple 16769  df-odu 17749  df-proset 17756  df-poset 17774  df-lub 17806  df-glb 17807  df-clat 17959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator