| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oduclatb | Structured version Visualization version GIF version | ||
| Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduclatb.d | ⊢ 𝐷 = (ODual‘𝑂) |
| Ref | Expression |
|---|---|
| oduclatb | ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝑂 ∈ CLat → 𝑂 ∈ V) | |
| 2 | noel 4304 | . . . . 5 ⊢ ¬ ((lub‘∅)‘∅) ∈ ∅ | |
| 3 | ssid 3972 | . . . . . 6 ⊢ ∅ ⊆ ∅ | |
| 4 | base0 17191 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2730 | . . . . . . 7 ⊢ (lub‘∅) = (lub‘∅) | |
| 6 | 4, 5 | clatlubcl 18469 | . . . . . 6 ⊢ ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅) |
| 7 | 3, 6 | mpan2 691 | . . . . 5 ⊢ (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅) |
| 8 | 2, 7 | mto 197 | . . . 4 ⊢ ¬ ∅ ∈ CLat |
| 9 | oduclatb.d | . . . . . 6 ⊢ 𝐷 = (ODual‘𝑂) | |
| 10 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
| 11 | 9, 10 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
| 12 | 11 | eleq1d 2814 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat)) |
| 13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat) |
| 14 | 13 | con4i 114 | . 2 ⊢ (𝐷 ∈ CLat → 𝑂 ∈ V) |
| 15 | 9 | oduposb 18295 | . . . 4 ⊢ (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
| 16 | ancom 460 | . . . . 5 ⊢ ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂))) | |
| 17 | eqid 2730 | . . . . . . . . 9 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
| 18 | 9, 17 | odulub 18373 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
| 19 | 18 | dmeqd 5872 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷)) |
| 20 | 19 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂))) |
| 21 | eqid 2730 | . . . . . . . . 9 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
| 22 | 9, 21 | oduglb 18375 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
| 23 | 22 | dmeqd 5872 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷)) |
| 24 | 23 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))) |
| 25 | 20, 24 | anbi12d 632 | . . . . 5 ⊢ (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
| 26 | 16, 25 | bitrid 283 | . . . 4 ⊢ (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
| 27 | 15, 26 | anbi12d 632 | . . 3 ⊢ (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))) |
| 28 | eqid 2730 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 29 | 28, 21, 17 | isclat 18466 | . . 3 ⊢ (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)))) |
| 30 | 9, 28 | odubas 18259 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝐷) |
| 31 | eqid 2730 | . . . 4 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
| 32 | eqid 2730 | . . . 4 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
| 33 | 30, 31, 32 | isclat 18466 | . . 3 ⊢ (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
| 34 | 27, 29, 33 | 3bitr4g 314 | . 2 ⊢ (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)) |
| 35 | 1, 14, 34 | pm5.21nii 378 | 1 ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 dom cdm 5641 ‘cfv 6514 Basecbs 17186 ODualcodu 18254 Posetcpo 18275 lubclub 18277 glbcglb 18278 CLatccla 18464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ple 17247 df-odu 18255 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 df-clat 18465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |