Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oduclatb | Structured version Visualization version GIF version |
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduclatb.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduclatb | ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3459 | . 2 ⊢ (𝑂 ∈ CLat → 𝑂 ∈ V) | |
2 | noel 4277 | . . . . 5 ⊢ ¬ ((lub‘∅)‘∅) ∈ ∅ | |
3 | ssid 3954 | . . . . . 6 ⊢ ∅ ⊆ ∅ | |
4 | base0 17014 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2736 | . . . . . . 7 ⊢ (lub‘∅) = (lub‘∅) | |
6 | 4, 5 | clatlubcl 18318 | . . . . . 6 ⊢ ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅) |
7 | 3, 6 | mpan2 688 | . . . . 5 ⊢ (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅) |
8 | 2, 7 | mto 196 | . . . 4 ⊢ ¬ ∅ ∈ CLat |
9 | oduclatb.d | . . . . . 6 ⊢ 𝐷 = (ODual‘𝑂) | |
10 | fvprc 6817 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
11 | 9, 10 | eqtrid 2788 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
12 | 11 | eleq1d 2821 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat)) |
13 | 8, 12 | mtbiri 326 | . . 3 ⊢ (¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat) |
14 | 13 | con4i 114 | . 2 ⊢ (𝐷 ∈ CLat → 𝑂 ∈ V) |
15 | 9 | oduposb 18144 | . . . 4 ⊢ (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
16 | ancom 461 | . . . . 5 ⊢ ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂))) | |
17 | eqid 2736 | . . . . . . . . 9 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
18 | 9, 17 | odulub 18222 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
19 | 18 | dmeqd 5847 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷)) |
20 | 19 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂))) |
21 | eqid 2736 | . . . . . . . . 9 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
22 | 9, 21 | oduglb 18224 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
23 | 22 | dmeqd 5847 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷)) |
24 | 23 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))) |
25 | 20, 24 | anbi12d 631 | . . . . 5 ⊢ (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
26 | 16, 25 | bitrid 282 | . . . 4 ⊢ (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
27 | 15, 26 | anbi12d 631 | . . 3 ⊢ (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))) |
28 | eqid 2736 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
29 | 28, 21, 17 | isclat 18315 | . . 3 ⊢ (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)))) |
30 | 9, 28 | odubas 18106 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝐷) |
31 | eqid 2736 | . . . 4 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
32 | eqid 2736 | . . . 4 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
33 | 30, 31, 32 | isclat 18315 | . . 3 ⊢ (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
34 | 27, 29, 33 | 3bitr4g 313 | . 2 ⊢ (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)) |
35 | 1, 14, 34 | pm5.21nii 379 | 1 ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 ∅c0 4269 𝒫 cpw 4547 dom cdm 5620 ‘cfv 6479 Basecbs 17009 ODualcodu 18101 Posetcpo 18122 lubclub 18124 glbcglb 18125 CLatccla 18313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-dec 12539 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ple 17079 df-odu 18102 df-proset 18110 df-poset 18128 df-lub 18161 df-glb 18162 df-clat 18314 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |