| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oduclatb | Structured version Visualization version GIF version | ||
| Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduclatb.d | ⊢ 𝐷 = (ODual‘𝑂) |
| Ref | Expression |
|---|---|
| oduclatb | ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑂 ∈ CLat → 𝑂 ∈ V) | |
| 2 | noel 4285 | . . . . 5 ⊢ ¬ ((lub‘∅)‘∅) ∈ ∅ | |
| 3 | ssid 3952 | . . . . . 6 ⊢ ∅ ⊆ ∅ | |
| 4 | base0 17125 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (lub‘∅) = (lub‘∅) | |
| 6 | 4, 5 | clatlubcl 18409 | . . . . . 6 ⊢ ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅) |
| 7 | 3, 6 | mpan2 691 | . . . . 5 ⊢ (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅) |
| 8 | 2, 7 | mto 197 | . . . 4 ⊢ ¬ ∅ ∈ CLat |
| 9 | oduclatb.d | . . . . . 6 ⊢ 𝐷 = (ODual‘𝑂) | |
| 10 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
| 11 | 9, 10 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
| 12 | 11 | eleq1d 2816 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat)) |
| 13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat) |
| 14 | 13 | con4i 114 | . 2 ⊢ (𝐷 ∈ CLat → 𝑂 ∈ V) |
| 15 | 9 | oduposb 18233 | . . . 4 ⊢ (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
| 16 | ancom 460 | . . . . 5 ⊢ ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂))) | |
| 17 | eqid 2731 | . . . . . . . . 9 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
| 18 | 9, 17 | odulub 18311 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
| 19 | 18 | dmeqd 5844 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷)) |
| 20 | 19 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂))) |
| 21 | eqid 2731 | . . . . . . . . 9 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
| 22 | 9, 21 | oduglb 18313 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
| 23 | 22 | dmeqd 5844 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷)) |
| 24 | 23 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))) |
| 25 | 20, 24 | anbi12d 632 | . . . . 5 ⊢ (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
| 26 | 16, 25 | bitrid 283 | . . . 4 ⊢ (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
| 27 | 15, 26 | anbi12d 632 | . . 3 ⊢ (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))) |
| 28 | eqid 2731 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 29 | 28, 21, 17 | isclat 18406 | . . 3 ⊢ (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)))) |
| 30 | 9, 28 | odubas 18197 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝐷) |
| 31 | eqid 2731 | . . . 4 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
| 32 | eqid 2731 | . . . 4 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
| 33 | 30, 31, 32 | isclat 18406 | . . 3 ⊢ (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
| 34 | 27, 29, 33 | 3bitr4g 314 | . 2 ⊢ (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)) |
| 35 | 1, 14, 34 | pm5.21nii 378 | 1 ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 dom cdm 5614 ‘cfv 6481 Basecbs 17120 ODualcodu 18192 Posetcpo 18213 lubclub 18215 glbcglb 18216 CLatccla 18404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ple 17181 df-odu 18193 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-clat 18405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |