Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oduclatb | Structured version Visualization version GIF version |
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduclatb.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduclatb | ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝑂 ∈ CLat → 𝑂 ∈ V) | |
2 | noel 4261 | . . . . 5 ⊢ ¬ ((lub‘∅)‘∅) ∈ ∅ | |
3 | ssid 3939 | . . . . . 6 ⊢ ∅ ⊆ ∅ | |
4 | base0 16845 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2738 | . . . . . . 7 ⊢ (lub‘∅) = (lub‘∅) | |
6 | 4, 5 | clatlubcl 18136 | . . . . . 6 ⊢ ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅) |
7 | 3, 6 | mpan2 687 | . . . . 5 ⊢ (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅) |
8 | 2, 7 | mto 196 | . . . 4 ⊢ ¬ ∅ ∈ CLat |
9 | oduclatb.d | . . . . . 6 ⊢ 𝐷 = (ODual‘𝑂) | |
10 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
11 | 9, 10 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
12 | 11 | eleq1d 2823 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat)) |
13 | 8, 12 | mtbiri 326 | . . 3 ⊢ (¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat) |
14 | 13 | con4i 114 | . 2 ⊢ (𝐷 ∈ CLat → 𝑂 ∈ V) |
15 | 9 | oduposb 17962 | . . . 4 ⊢ (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
16 | ancom 460 | . . . . 5 ⊢ ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂))) | |
17 | eqid 2738 | . . . . . . . . 9 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
18 | 9, 17 | odulub 18040 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
19 | 18 | dmeqd 5803 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷)) |
20 | 19 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂))) |
21 | eqid 2738 | . . . . . . . . 9 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
22 | 9, 21 | oduglb 18042 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
23 | 22 | dmeqd 5803 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷)) |
24 | 23 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))) |
25 | 20, 24 | anbi12d 630 | . . . . 5 ⊢ (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
26 | 16, 25 | syl5bb 282 | . . . 4 ⊢ (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
27 | 15, 26 | anbi12d 630 | . . 3 ⊢ (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))) |
28 | eqid 2738 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
29 | 28, 21, 17 | isclat 18133 | . . 3 ⊢ (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)))) |
30 | 9, 28 | odubas 17925 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝐷) |
31 | eqid 2738 | . . . 4 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
32 | eqid 2738 | . . . 4 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
33 | 30, 31, 32 | isclat 18133 | . . 3 ⊢ (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
34 | 27, 29, 33 | 3bitr4g 313 | . 2 ⊢ (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)) |
35 | 1, 14, 34 | pm5.21nii 379 | 1 ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 dom cdm 5580 ‘cfv 6418 Basecbs 16840 ODualcodu 17920 Posetcpo 17940 lubclub 17942 glbcglb 17943 CLatccla 18131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-odu 17921 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-clat 18132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |