MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduclatb Structured version   Visualization version   GIF version

Theorem oduclatb 18466
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
oduclatb.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
oduclatb (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)

Proof of Theorem oduclatb
StepHypRef Expression
1 elex 3468 . 2 (𝑂 ∈ CLat → 𝑂 ∈ V)
2 noel 4301 . . . . 5 ¬ ((lub‘∅)‘∅) ∈ ∅
3 ssid 3969 . . . . . 6 ∅ ⊆ ∅
4 base0 17184 . . . . . . 7 ∅ = (Base‘∅)
5 eqid 2729 . . . . . . 7 (lub‘∅) = (lub‘∅)
64, 5clatlubcl 18462 . . . . . 6 ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅)
73, 6mpan2 691 . . . . 5 (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅)
82, 7mto 197 . . . 4 ¬ ∅ ∈ CLat
9 oduclatb.d . . . . . 6 𝐷 = (ODual‘𝑂)
10 fvprc 6850 . . . . . 6 𝑂 ∈ V → (ODual‘𝑂) = ∅)
119, 10eqtrid 2776 . . . . 5 𝑂 ∈ V → 𝐷 = ∅)
1211eleq1d 2813 . . . 4 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat))
138, 12mtbiri 327 . . 3 𝑂 ∈ V → ¬ 𝐷 ∈ CLat)
1413con4i 114 . 2 (𝐷 ∈ CLat → 𝑂 ∈ V)
159oduposb 18288 . . . 4 (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))
16 ancom 460 . . . . 5 ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)))
17 eqid 2729 . . . . . . . . 9 (glb‘𝑂) = (glb‘𝑂)
189, 17odulub 18366 . . . . . . . 8 (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷))
1918dmeqd 5869 . . . . . . 7 (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷))
2019eqeq1d 2731 . . . . . 6 (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂)))
21 eqid 2729 . . . . . . . . 9 (lub‘𝑂) = (lub‘𝑂)
229, 21oduglb 18368 . . . . . . . 8 (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷))
2322dmeqd 5869 . . . . . . 7 (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷))
2423eqeq1d 2731 . . . . . 6 (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))
2520, 24anbi12d 632 . . . . 5 (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2616, 25bitrid 283 . . . 4 (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2715, 26anbi12d 632 . . 3 (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))))
28 eqid 2729 . . . 4 (Base‘𝑂) = (Base‘𝑂)
2928, 21, 17isclat 18459 . . 3 (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))))
309, 28odubas 18252 . . . 4 (Base‘𝑂) = (Base‘𝐷)
31 eqid 2729 . . . 4 (lub‘𝐷) = (lub‘𝐷)
32 eqid 2729 . . . 4 (glb‘𝐷) = (glb‘𝐷)
3330, 31, 32isclat 18459 . . 3 (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
3427, 29, 333bitr4g 314 . 2 (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat))
351, 14, 34pm5.21nii 378 1 (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563  dom cdm 5638  cfv 6511  Basecbs 17179  ODualcodu 18247  Posetcpo 18268  lubclub 18270  glbcglb 18271  CLatccla 18457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ple 17240  df-odu 18248  df-proset 18255  df-poset 18274  df-lub 18305  df-glb 18306  df-clat 18458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator