MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduclatb Structured version   Visualization version   GIF version

Theorem oduclatb 18532
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
oduclatb.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
oduclatb (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)

Proof of Theorem oduclatb
StepHypRef Expression
1 elex 3482 . 2 (𝑂 ∈ CLat → 𝑂 ∈ V)
2 noel 4333 . . . . 5 ¬ ((lub‘∅)‘∅) ∈ ∅
3 ssid 4002 . . . . . 6 ∅ ⊆ ∅
4 base0 17218 . . . . . . 7 ∅ = (Base‘∅)
5 eqid 2726 . . . . . . 7 (lub‘∅) = (lub‘∅)
64, 5clatlubcl 18528 . . . . . 6 ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅)
73, 6mpan2 689 . . . . 5 (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅)
82, 7mto 196 . . . 4 ¬ ∅ ∈ CLat
9 oduclatb.d . . . . . 6 𝐷 = (ODual‘𝑂)
10 fvprc 6893 . . . . . 6 𝑂 ∈ V → (ODual‘𝑂) = ∅)
119, 10eqtrid 2778 . . . . 5 𝑂 ∈ V → 𝐷 = ∅)
1211eleq1d 2811 . . . 4 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat))
138, 12mtbiri 326 . . 3 𝑂 ∈ V → ¬ 𝐷 ∈ CLat)
1413con4i 114 . 2 (𝐷 ∈ CLat → 𝑂 ∈ V)
159oduposb 18354 . . . 4 (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))
16 ancom 459 . . . . 5 ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)))
17 eqid 2726 . . . . . . . . 9 (glb‘𝑂) = (glb‘𝑂)
189, 17odulub 18432 . . . . . . . 8 (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷))
1918dmeqd 5912 . . . . . . 7 (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷))
2019eqeq1d 2728 . . . . . 6 (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂)))
21 eqid 2726 . . . . . . . . 9 (lub‘𝑂) = (lub‘𝑂)
229, 21oduglb 18434 . . . . . . . 8 (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷))
2322dmeqd 5912 . . . . . . 7 (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷))
2423eqeq1d 2728 . . . . . 6 (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))
2520, 24anbi12d 630 . . . . 5 (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2616, 25bitrid 282 . . . 4 (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
2715, 26anbi12d 630 . . 3 (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))))
28 eqid 2726 . . . 4 (Base‘𝑂) = (Base‘𝑂)
2928, 21, 17isclat 18525 . . 3 (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))))
309, 28odubas 18316 . . . 4 (Base‘𝑂) = (Base‘𝐷)
31 eqid 2726 . . . 4 (lub‘𝐷) = (lub‘𝐷)
32 eqid 2726 . . . 4 (glb‘𝐷) = (glb‘𝐷)
3330, 31, 32isclat 18525 . . 3 (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))
3427, 29, 333bitr4g 313 . 2 (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat))
351, 14, 34pm5.21nii 377 1 (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  wss 3947  c0 4325  𝒫 cpw 4607  dom cdm 5682  cfv 6554  Basecbs 17213  ODualcodu 18311  Posetcpo 18332  lubclub 18334  glbcglb 18335  CLatccla 18523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12730  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ple 17286  df-odu 18312  df-proset 18320  df-poset 18338  df-lub 18371  df-glb 18372  df-clat 18524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator