Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clatglbcl2 | Structured version Visualization version GIF version |
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
clatglbcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglbcl.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbcl2 | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglbcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | 1 | fvexi 6682 | . . . . 5 ⊢ 𝐵 ∈ V |
3 | 2 | elpw2 5210 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
4 | 3 | biimpri 231 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
5 | 4 | adantl 485 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
6 | eqid 2738 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
7 | clatglbcl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
8 | 1, 6, 7 | isclat 17828 | . . . 4 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
9 | simprr 773 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)) → dom 𝐺 = 𝒫 𝐵) | |
10 | 8, 9 | sylbi 220 | . . 3 ⊢ (𝐾 ∈ CLat → dom 𝐺 = 𝒫 𝐵) |
11 | 10 | adantr 484 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
12 | 5, 11 | eleqtrrd 2836 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ⊆ wss 3841 𝒫 cpw 4485 dom cdm 5519 ‘cfv 6333 Basecbs 16579 Posetcpo 17659 lubclub 17661 glbcglb 17662 CLatccla 17826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-dm 5529 df-iota 6291 df-fv 6341 df-clat 17827 |
This theorem is referenced by: isglbd 17836 clatglb 17843 clatglble 17844 |
Copyright terms: Public domain | W3C validator |