| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatglbcl2 | Structured version Visualization version GIF version | ||
| Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| Ref | Expression |
|---|---|
| clatglbcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatglbcl.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| clatglbcl2 | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglbcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 3 | 2 | elpw2 5273 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
| 4 | 3 | biimpri 228 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
| 6 | eqid 2729 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | clatglbcl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 8 | 1, 6, 7 | isclat 18406 | . . . 4 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 9 | simprr 772 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)) → dom 𝐺 = 𝒫 𝐵) | |
| 10 | 8, 9 | sylbi 217 | . . 3 ⊢ (𝐾 ∈ CLat → dom 𝐺 = 𝒫 𝐵) |
| 11 | 10 | adantr 480 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
| 12 | 5, 11 | eleqtrrd 2831 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 dom cdm 5619 ‘cfv 6482 Basecbs 17120 Posetcpo 18213 lubclub 18215 glbcglb 18216 CLatccla 18404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-dm 5629 df-iota 6438 df-fv 6490 df-clat 18405 |
| This theorem is referenced by: isglbd 18415 clatglb 18422 clatglble 18423 glbconN 39356 |
| Copyright terms: Public domain | W3C validator |