![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglbcl2 | Structured version Visualization version GIF version |
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
clatglbcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglbcl.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbcl2 | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglbcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | 1 | fvexi 6934 | . . . . 5 ⊢ 𝐵 ∈ V |
3 | 2 | elpw2 5352 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
4 | 3 | biimpri 228 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
6 | eqid 2740 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
7 | clatglbcl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
8 | 1, 6, 7 | isclat 18570 | . . . 4 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
9 | simprr 772 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)) → dom 𝐺 = 𝒫 𝐵) | |
10 | 8, 9 | sylbi 217 | . . 3 ⊢ (𝐾 ∈ CLat → dom 𝐺 = 𝒫 𝐵) |
11 | 10 | adantr 480 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
12 | 5, 11 | eleqtrrd 2847 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 dom cdm 5700 ‘cfv 6573 Basecbs 17258 Posetcpo 18377 lubclub 18379 glbcglb 18380 CLatccla 18568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-clat 18569 |
This theorem is referenced by: isglbd 18579 clatglb 18586 clatglble 18587 glbconN 39333 |
Copyright terms: Public domain | W3C validator |