MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl2 Structured version   Visualization version   GIF version

Theorem clatglbcl2 18412
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
clatglbcl.b 𝐵 = (Base‘𝐾)
clatglbcl.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbcl2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)

Proof of Theorem clatglbcl2
StepHypRef Expression
1 clatglbcl.b . . . . . 6 𝐵 = (Base‘𝐾)
21fvexi 6836 . . . . 5 𝐵 ∈ V
32elpw2 5270 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
43biimpri 228 . . 3 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
54adantl 481 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
6 eqid 2731 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
7 clatglbcl.g . . . . 5 𝐺 = (glb‘𝐾)
81, 6, 7isclat 18406 . . . 4 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
9 simprr 772 . . . 4 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)) → dom 𝐺 = 𝒫 𝐵)
108, 9sylbi 217 . . 3 (𝐾 ∈ CLat → dom 𝐺 = 𝒫 𝐵)
1110adantr 480 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝐺 = 𝒫 𝐵)
125, 11eleqtrrd 2834 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4547  dom cdm 5614  cfv 6481  Basecbs 17120  Posetcpo 18213  lubclub 18215  glbcglb 18216  CLatccla 18404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-dm 5624  df-iota 6437  df-fv 6489  df-clat 18405
This theorem is referenced by:  isglbd  18415  clatglb  18422  clatglble  18423  glbconN  39424
  Copyright terms: Public domain W3C validator