| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatglbcl2 | Structured version Visualization version GIF version | ||
| Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
| Ref | Expression |
|---|---|
| clatglbcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatglbcl.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| clatglbcl2 | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglbcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | 1 | fvexi 6895 | . . . . 5 ⊢ 𝐵 ∈ V |
| 3 | 2 | elpw2 5309 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
| 4 | 3 | biimpri 228 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
| 6 | eqid 2736 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | clatglbcl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 8 | 1, 6, 7 | isclat 18515 | . . . 4 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 9 | simprr 772 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)) → dom 𝐺 = 𝒫 𝐵) | |
| 10 | 8, 9 | sylbi 217 | . . 3 ⊢ (𝐾 ∈ CLat → dom 𝐺 = 𝒫 𝐵) |
| 11 | 10 | adantr 480 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
| 12 | 5, 11 | eleqtrrd 2838 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 dom cdm 5659 ‘cfv 6536 Basecbs 17233 Posetcpo 18324 lubclub 18326 glbcglb 18327 CLatccla 18513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-dm 5669 df-iota 6489 df-fv 6544 df-clat 18514 |
| This theorem is referenced by: isglbd 18524 clatglb 18531 clatglble 18532 glbconN 39400 |
| Copyright terms: Public domain | W3C validator |