Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crngmgp | Structured version Visualization version GIF version |
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | iscrng 19790 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
3 | 2 | simprbi 497 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 CMndccmn 19386 mulGrpcmgp 19720 Ringcrg 19783 CRingccrg 19784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-cring 19786 |
This theorem is referenced by: crngcom 19801 gsummgp0 19847 prdscrngd 19852 crngbinom 19860 unitabl 19910 subrgcrng 20028 sraassa 21074 mplbas2 21243 evlslem3 21290 evlslem6 21291 evlslem1 21292 evlsgsummul 21302 evls1gsummul 21491 evl1gsummul 21526 mamuvs2 21553 matgsumcl 21609 madetsmelbas 21613 madetsmelbas2 21614 mdetleib2 21737 mdetf 21744 mdetdiaglem 21747 mdetdiag 21748 mdetdiagid 21749 mdetrlin 21751 mdetrsca 21752 mdetralt 21757 mdetuni0 21770 smadiadetlem4 21818 chpscmat 21991 chp0mat 21995 chpidmat 21996 amgmlem 26139 amgm 26140 wilthlem2 26218 wilthlem3 26219 lgseisenlem3 26525 lgseisenlem4 26526 frobrhm 31485 cringm4 31622 mdetpmtr1 31773 pwsgprod 40269 evlsbagval 40275 mhphf 40285 mgpsumunsn 45697 mgpsumz 45698 mgpsumn 45699 amgmwlem 46506 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |