![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngmgp | Structured version Visualization version GIF version |
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | iscrng 20267 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 CMndccmn 19822 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-cring 20263 |
This theorem is referenced by: crngcom 20278 crngbascntr 20283 gsummgp0 20341 prdscrngd 20345 crngbinom 20358 unitabl 20410 subrgcrng 20603 frobrhm 21617 sraassaOLD 21913 mplbas2 22083 evlslem3 22127 evlslem6 22128 evlslem1 22129 evlsgsummul 22139 evls1gsummul 22350 evl1gsummul 22385 mamuvs2 22431 matgsumcl 22487 madetsmelbas 22491 madetsmelbas2 22492 mdetleib2 22615 mdetf 22622 mdetdiaglem 22625 mdetdiag 22626 mdetdiagid 22627 mdetrlin 22629 mdetrsca 22630 mdetralt 22635 mdetuni0 22648 smadiadetlem4 22696 chpscmat 22869 chp0mat 22873 chpidmat 22874 amgmlem 27051 amgm 27052 wilthlem2 27130 wilthlem3 27131 lgseisenlem3 27439 lgseisenlem4 27440 rlocaddval 33240 rlocmulval 33241 rloccring 33242 unitprodclb 33382 cringm4 33439 rprmdvdsprod 33527 1arithidomlem1 33528 1arithidom 33530 1arithufdlem3 33539 dfufd2lem 33542 mdetpmtr1 33769 aks6d1c1p2 42066 aks6d1c1p3 42067 aks6d1c1p4 42068 aks6d1c1p5 42069 aks6d1c1p7 42070 aks6d1c1p6 42071 aks6d1c1p8 42072 aks6d1c1 42073 evl1gprodd 42074 aks6d1c2lem3 42083 aks6d1c2lem4 42084 idomnnzgmulnz 42090 aks6d1c5lem0 42092 aks6d1c5lem3 42094 aks6d1c5lem2 42095 aks6d1c5 42096 deg1gprod 42097 aks6d1c6lem2 42128 aks6d1c6lem3 42129 aks6d1c6lem4 42130 aks6d1c6lem5 42134 aks5lem2 42144 aks5lem3a 42146 unitscyglem5 42156 pwsgprod 42499 evlsvvvallem 42516 selvvvval 42540 evlselv 42542 mhphf 42552 mgpsumunsn 48086 mgpsumz 48087 mgpsumn 48088 amgmwlem 48896 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |