![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngmgp | Structured version Visualization version GIF version |
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | iscrng 18941 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
3 | 2 | simprbi 492 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 CMndccmn 18579 mulGrpcmgp 18876 Ringcrg 18934 CRingccrg 18935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-cring 18937 |
This theorem is referenced by: crngcom 18949 gsummgp0 18995 prdscrngd 19000 crngbinom 19008 unitabl 19055 subrgcrng 19176 sraassa 19722 mplbas2 19867 evlslem6 19909 evlslem3 19910 evlslem1 19911 evls1gsummul 20086 evl1gsummul 20120 mamuvs2 20616 matgsumcl 20671 madetsmelbas 20675 madetsmelbas2 20676 mdetleib2 20799 mdetf 20806 mdetdiaglem 20809 mdetdiag 20810 mdetdiagid 20811 mdetrlin 20813 mdetrsca 20814 mdetralt 20819 mdetuni0 20832 smadiadetlem4 20881 chpscmat 21054 chp0mat 21058 chpidmat 21059 amgmlem 25168 amgm 25169 wilthlem2 25247 wilthlem3 25248 lgseisenlem3 25554 lgseisenlem4 25555 mdetpmtr1 30487 mgpsumunsn 43155 mgpsumz 43156 mgpsumn 43157 amgmwlem 43654 amgmlemALT 43655 |
Copyright terms: Public domain | W3C validator |