MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngmgp Structured version   Visualization version   GIF version

Theorem crngmgp 20126
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
crngmgp (𝑅 ∈ CRing → 𝐺 ∈ CMnd)

Proof of Theorem crngmgp
StepHypRef Expression
1 ringmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
21iscrng 20125 . 2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
32simprbi 496 1 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6482  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-cring 20121
This theorem is referenced by:  crngcom  20136  crngbascntr  20141  gsummgp0  20203  prdscrngd  20207  crngbinom  20220  unitabl  20269  subrgcrng  20460  frobrhm  21482  sraassaOLD  21777  mplbas2  21947  evlslem3  21985  evlslem6  21986  evlslem1  21987  evlsgsummul  21997  evls1gsummul  22210  evl1gsummul  22245  mamuvs2  22291  matgsumcl  22345  madetsmelbas  22349  madetsmelbas2  22350  mdetleib2  22473  mdetf  22480  mdetdiaglem  22483  mdetdiag  22484  mdetdiagid  22485  mdetrlin  22487  mdetrsca  22488  mdetralt  22493  mdetuni0  22506  smadiadetlem4  22554  chpscmat  22727  chp0mat  22731  chpidmat  22732  amgmlem  26898  amgm  26899  wilthlem2  26977  wilthlem3  26978  lgseisenlem3  27286  lgseisenlem4  27287  elrgspnsubrunlem1  33187  elrgspnsubrunlem2  33188  rlocaddval  33208  rlocmulval  33209  rloccring  33210  unitprodclb  33326  cringm4  33383  rprmdvdsprod  33471  1arithidomlem1  33472  1arithidom  33474  1arithufdlem3  33483  dfufd2lem  33486  mdetpmtr1  33790  aks6d1c1p2  42082  aks6d1c1p3  42083  aks6d1c1p4  42084  aks6d1c1p5  42085  aks6d1c1p7  42086  aks6d1c1p6  42087  aks6d1c1p8  42088  aks6d1c1  42089  evl1gprodd  42090  aks6d1c2lem3  42099  aks6d1c2lem4  42100  idomnnzgmulnz  42106  aks6d1c5lem0  42108  aks6d1c5lem3  42110  aks6d1c5lem2  42111  aks6d1c5  42112  deg1gprod  42113  aks6d1c6lem2  42144  aks6d1c6lem3  42145  aks6d1c6lem4  42146  aks6d1c6lem5  42150  aks5lem2  42160  aks5lem3a  42162  unitscyglem5  42172  pwsgprod  42517  evlsvvvallem  42534  selvvvval  42558  evlselv  42560  mhphf  42570  mgpsumunsn  48345  mgpsumz  48346  mgpsumn  48347  amgmwlem  49787  amgmlemALT  49788
  Copyright terms: Public domain W3C validator