![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngmgp | Structured version Visualization version GIF version |
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | iscrng 20258 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 CMndccmn 19813 mulGrpcmgp 20152 Ringcrg 20251 CRingccrg 20252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-cring 20254 |
This theorem is referenced by: crngcom 20269 crngbascntr 20274 gsummgp0 20332 prdscrngd 20336 crngbinom 20349 unitabl 20401 subrgcrng 20592 frobrhm 21612 sraassaOLD 21908 mplbas2 22078 evlslem3 22122 evlslem6 22123 evlslem1 22124 evlsgsummul 22134 evls1gsummul 22345 evl1gsummul 22380 mamuvs2 22426 matgsumcl 22482 madetsmelbas 22486 madetsmelbas2 22487 mdetleib2 22610 mdetf 22617 mdetdiaglem 22620 mdetdiag 22621 mdetdiagid 22622 mdetrlin 22624 mdetrsca 22625 mdetralt 22630 mdetuni0 22643 smadiadetlem4 22691 chpscmat 22864 chp0mat 22868 chpidmat 22869 amgmlem 27048 amgm 27049 wilthlem2 27127 wilthlem3 27128 lgseisenlem3 27436 lgseisenlem4 27437 rlocaddval 33255 rlocmulval 33256 rloccring 33257 unitprodclb 33397 cringm4 33454 rprmdvdsprod 33542 1arithidomlem1 33543 1arithidom 33545 1arithufdlem3 33554 dfufd2lem 33557 mdetpmtr1 33784 aks6d1c1p2 42091 aks6d1c1p3 42092 aks6d1c1p4 42093 aks6d1c1p5 42094 aks6d1c1p7 42095 aks6d1c1p6 42096 aks6d1c1p8 42097 aks6d1c1 42098 evl1gprodd 42099 aks6d1c2lem3 42108 aks6d1c2lem4 42109 idomnnzgmulnz 42115 aks6d1c5lem0 42117 aks6d1c5lem3 42119 aks6d1c5lem2 42120 aks6d1c5 42121 deg1gprod 42122 aks6d1c6lem2 42153 aks6d1c6lem3 42154 aks6d1c6lem4 42155 aks6d1c6lem5 42159 aks5lem2 42169 aks5lem3a 42171 unitscyglem5 42181 pwsgprod 42531 evlsvvvallem 42548 selvvvval 42572 evlselv 42574 mhphf 42584 mgpsumunsn 48206 mgpsumz 48207 mgpsumn 48208 amgmwlem 49033 amgmlemALT 49034 |
Copyright terms: Public domain | W3C validator |