Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crngmgp | Structured version Visualization version GIF version |
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | iscrng 19705 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 CMndccmn 19301 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-cring 19701 |
This theorem is referenced by: crngcom 19716 gsummgp0 19762 prdscrngd 19767 crngbinom 19775 unitabl 19825 subrgcrng 19943 sraassa 20984 mplbas2 21153 evlslem3 21200 evlslem6 21201 evlslem1 21202 evlsgsummul 21212 evls1gsummul 21401 evl1gsummul 21436 mamuvs2 21463 matgsumcl 21517 madetsmelbas 21521 madetsmelbas2 21522 mdetleib2 21645 mdetf 21652 mdetdiaglem 21655 mdetdiag 21656 mdetdiagid 21657 mdetrlin 21659 mdetrsca 21660 mdetralt 21665 mdetuni0 21678 smadiadetlem4 21726 chpscmat 21899 chp0mat 21903 chpidmat 21904 amgmlem 26044 amgm 26045 wilthlem2 26123 wilthlem3 26124 lgseisenlem3 26430 lgseisenlem4 26431 frobrhm 31387 cringm4 31524 mdetpmtr1 31675 pwsgprod 40194 evlsbagval 40198 mhphf 40208 mgpsumunsn 45585 mgpsumz 45586 mgpsumn 45587 amgmwlem 46392 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |