| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crngpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ringpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| ringpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| ringpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| ringpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| crngpropd | ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | ringpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | ringpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 4 | ringpropd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 5 | 1, 2, 3, 4 | ringpropd 20173 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 8 | 6, 7 | mgpbas 20030 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(mulGrp‘𝐾)) |
| 9 | 1, 8 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
| 10 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 12 | 10, 11 | mgpbas 20030 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(mulGrp‘𝐿)) |
| 13 | 2, 12 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 15 | 6, 14 | mgpplusg 20029 | . . . . . 6 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
| 16 | 15 | oveqi 7382 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
| 17 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 18 | 10, 17 | mgpplusg 20029 | . . . . . 6 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
| 19 | 18 | oveqi 7382 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
| 20 | 4, 16, 19 | 3eqtr3g 2787 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 21 | 9, 13, 20 | cmnpropd 19697 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd)) |
| 22 | 5, 21 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))) |
| 23 | 6 | iscrng 20125 | . 2 ⊢ (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd)) |
| 24 | 10 | iscrng 20125 | . 2 ⊢ (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)) |
| 25 | 22, 23, 24 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 CMndccmn 19686 mulGrpcmgp 20025 Ringcrg 20118 CRingccrg 20119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-cmn 19688 df-mgp 20026 df-ring 20120 df-cring 20121 |
| This theorem is referenced by: fldpropd 20655 zncrng 21430 opsrcrng 21942 idompropd 33201 |
| Copyright terms: Public domain | W3C validator |