![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngpropd | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ringpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
ringpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
ringpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
ringpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
crngpropd | ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | ringpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | ringpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | ringpropd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
5 | 1, 2, 3, 4 | ringpropd 20183 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
6 | eqid 2724 | . . . . . 6 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
7 | eqid 2724 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 6, 7 | mgpbas 20041 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(mulGrp‘𝐾)) |
9 | 1, 8 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
10 | eqid 2724 | . . . . . 6 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
11 | eqid 2724 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
12 | 10, 11 | mgpbas 20041 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(mulGrp‘𝐿)) |
13 | 2, 12 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
14 | eqid 2724 | . . . . . . 7 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
15 | 6, 14 | mgpplusg 20039 | . . . . . 6 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
16 | 15 | oveqi 7415 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
17 | eqid 2724 | . . . . . . 7 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
18 | 10, 17 | mgpplusg 20039 | . . . . . 6 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
19 | 18 | oveqi 7415 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
20 | 4, 16, 19 | 3eqtr3g 2787 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
21 | 9, 13, 20 | cmnpropd 19707 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd)) |
22 | 5, 21 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))) |
23 | 6 | iscrng 20141 | . 2 ⊢ (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd)) |
24 | 10 | iscrng 20141 | . 2 ⊢ (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)) |
25 | 22, 23, 24 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6534 (class class class)co 7402 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 CMndccmn 19696 mulGrpcmgp 20035 Ringcrg 20134 CRingccrg 20135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 df-cmn 19698 df-mgp 20036 df-ring 20136 df-cring 20137 |
This theorem is referenced by: fldpropd 20621 zncrng 21428 opsrcrng 21951 |
Copyright terms: Public domain | W3C validator |