Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crngpropd | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ringpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
ringpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
ringpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
ringpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
crngpropd | ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | ringpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | ringpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | ringpropd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
5 | 1, 2, 3, 4 | ringpropd 19736 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
6 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
7 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 6, 7 | mgpbas 19641 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(mulGrp‘𝐾)) |
9 | 1, 8 | eqtrdi 2795 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
10 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
11 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
12 | 10, 11 | mgpbas 19641 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(mulGrp‘𝐿)) |
13 | 2, 12 | eqtrdi 2795 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
14 | eqid 2738 | . . . . . . 7 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
15 | 6, 14 | mgpplusg 19639 | . . . . . 6 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
16 | 15 | oveqi 7268 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
17 | eqid 2738 | . . . . . . 7 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
18 | 10, 17 | mgpplusg 19639 | . . . . . 6 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
19 | 18 | oveqi 7268 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
20 | 4, 16, 19 | 3eqtr3g 2802 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
21 | 9, 13, 20 | cmnpropd 19311 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd)) |
22 | 5, 21 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))) |
23 | 6 | iscrng 19705 | . 2 ⊢ (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd)) |
24 | 10 | iscrng 19705 | . 2 ⊢ (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)) |
25 | 22, 23, 24 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 CMndccmn 19301 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-cmn 19303 df-mgp 19636 df-ring 19700 df-cring 19701 |
This theorem is referenced by: fldpropd 19934 zncrng 20664 opsrcrng 21176 |
Copyright terms: Public domain | W3C validator |