MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngpropd Structured version   Visualization version   GIF version

Theorem crngpropd 20224
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
crngpropd (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ringpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ringpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 ringpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 20223 . . 3 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
6 eqid 2728 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
7 eqid 2728 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
86, 7mgpbas 20079 . . . . 5 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
91, 8eqtrdi 2784 . . . 4 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
10 eqid 2728 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
11 eqid 2728 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
1210, 11mgpbas 20079 . . . . 5 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
132, 12eqtrdi 2784 . . . 4 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
14 eqid 2728 . . . . . . 7 (.r𝐾) = (.r𝐾)
156, 14mgpplusg 20077 . . . . . 6 (.r𝐾) = (+g‘(mulGrp‘𝐾))
1615oveqi 7433 . . . . 5 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
17 eqid 2728 . . . . . . 7 (.r𝐿) = (.r𝐿)
1810, 17mgpplusg 20077 . . . . . 6 (.r𝐿) = (+g‘(mulGrp‘𝐿))
1918oveqi 7433 . . . . 5 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
204, 16, 193eqtr3g 2791 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
219, 13, 20cmnpropd 19745 . . 3 (𝜑 → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd))
225, 21anbi12d 631 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
236iscrng 20179 . 2 (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd))
2410iscrng 20179 . 2 (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))
2522, 23, 243bitr4g 314 1 (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17179  +gcplusg 17232  .rcmulr 17233  CMndccmn 19734  mulGrpcmgp 20073  Ringcrg 20172  CRingccrg 20173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-cmn 19736  df-mgp 20074  df-ring 20174  df-cring 20175
This theorem is referenced by:  fldpropd  20661  zncrng  21477  opsrcrng  22002
  Copyright terms: Public domain W3C validator