MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrng2 Structured version   Visualization version   GIF version

Theorem iscrng2 20161
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
iscrng2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem iscrng2
StepHypRef Expression
1 eqid 2729 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21iscrng 20149 . 2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
31ringmgp 20148 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4 ringcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
51, 4mgpbas 20054 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
6 ringcl.t . . . . . . 7 · = (.r𝑅)
71, 6mgpplusg 20053 . . . . . 6 · = (+g‘(mulGrp‘𝑅))
85, 7iscmn 19719 . . . . 5 ((mulGrp‘𝑅) ∈ CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
98baib 535 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
103, 9syl 17 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
1110pm5.32i 574 . 2 ((𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd) ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
122, 11bitri 275 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  Mndcmnd 18661  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-cmn 19712  df-mgp 20050  df-ring 20144  df-cring 20145
This theorem is referenced by:  primefld  20714  quscrng  21193  mat0dimcrng  22357  mat1dimcrng  22364  dmatcrng  22389  scmatcrng  22408  imacrhmcl  42502
  Copyright terms: Public domain W3C validator