MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscrngd Structured version   Visualization version   GIF version

Theorem prdscrngd 19767
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdscrngd.y 𝑌 = (𝑆Xs𝑅)
prdscrngd.i (𝜑𝐼𝑊)
prdscrngd.s (𝜑𝑆𝑉)
prdscrngd.r (𝜑𝑅:𝐼⟶CRing)
Assertion
Ref Expression
prdscrngd (𝜑𝑌 ∈ CRing)

Proof of Theorem prdscrngd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdscrngd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdscrngd.i . . 3 (𝜑𝐼𝑊)
3 prdscrngd.s . . 3 (𝜑𝑆𝑉)
4 prdscrngd.r . . . 4 (𝜑𝑅:𝐼⟶CRing)
5 crngring 19710 . . . . 5 (𝑥 ∈ CRing → 𝑥 ∈ Ring)
65ssriv 3921 . . . 4 CRing ⊆ Ring
7 fss 6601 . . . 4 ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring)
84, 6, 7sylancl 585 . . 3 (𝜑𝑅:𝐼⟶Ring)
91, 2, 3, 8prdsringd 19766 . 2 (𝜑𝑌 ∈ Ring)
10 eqid 2738 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 fnmgp 19637 . . . . . . 7 mulGrp Fn V
12 ssv 3941 . . . . . . 7 CRing ⊆ V
13 fnssres 6539 . . . . . . 7 ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing)
1411, 12, 13mp2an 688 . . . . . 6 (mulGrp ↾ CRing) Fn CRing
15 fvres 6775 . . . . . . . 8 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥))
16 eqid 2738 . . . . . . . . 9 (mulGrp‘𝑥) = (mulGrp‘𝑥)
1716crngmgp 19706 . . . . . . . 8 (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd)
1815, 17eqeltrd 2839 . . . . . . 7 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)
1918rgen 3073 . . . . . 6 𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd
20 ffnfv 6974 . . . . . 6 ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd))
2114, 19, 20mpbir2an 707 . . . . 5 (mulGrp ↾ CRing):CRing⟶CMnd
22 fco2 6611 . . . . 5 (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2321, 4, 22sylancr 586 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2410, 2, 3, 23prdscmnd 19377 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)
25 eqidd 2739 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
26 eqid 2738 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
274ffnd 6585 . . . . . 6 (𝜑𝑅 Fn 𝐼)
281, 26, 10, 2, 3, 27prdsmgp 19764 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
2928simpld 494 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
3028simprd 495 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
3130oveqdr 7283 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
3225, 29, 31cmnpropd 19311 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd))
3324, 32mpbird 256 . 2 (𝜑 → (mulGrp‘𝑌) ∈ CMnd)
3426iscrng 19705 . 2 (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd))
359, 33, 34sylanbrc 582 1 (𝜑𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Xscprds 17073  CMndccmn 19301  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-cmn 19303  df-mgp 19636  df-ring 19700  df-cring 19701
This theorem is referenced by:  pwscrng  19771
  Copyright terms: Public domain W3C validator