| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdscrngd | Structured version Visualization version GIF version | ||
| Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| prdscrngd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdscrngd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdscrngd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdscrngd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CRing) |
| Ref | Expression |
|---|---|
| prdscrngd | ⊢ (𝜑 → 𝑌 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdscrngd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 2 | prdscrngd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | prdscrngd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdscrngd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CRing) | |
| 5 | crngring 20154 | . . . . 5 ⊢ (𝑥 ∈ CRing → 𝑥 ∈ Ring) | |
| 6 | 5 | ssriv 3950 | . . . 4 ⊢ CRing ⊆ Ring |
| 7 | fss 6704 | . . . 4 ⊢ ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring) | |
| 8 | 4, 6, 7 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Ring) |
| 9 | 1, 2, 3, 8 | prdsringd 20230 | . 2 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 10 | eqid 2729 | . . . 4 ⊢ (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅)) | |
| 11 | fnmgp 20051 | . . . . . . 7 ⊢ mulGrp Fn V | |
| 12 | ssv 3971 | . . . . . . 7 ⊢ CRing ⊆ V | |
| 13 | fnssres 6641 | . . . . . . 7 ⊢ ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . . . 6 ⊢ (mulGrp ↾ CRing) Fn CRing |
| 15 | fvres 6877 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥)) | |
| 16 | eqid 2729 | . . . . . . . . 9 ⊢ (mulGrp‘𝑥) = (mulGrp‘𝑥) | |
| 17 | 16 | crngmgp 20150 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd) |
| 18 | 15, 17 | eqeltrd 2828 | . . . . . . 7 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd) |
| 19 | 18 | rgen 3046 | . . . . . 6 ⊢ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd |
| 20 | ffnfv 7091 | . . . . . 6 ⊢ ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)) | |
| 21 | 14, 19, 20 | mpbir2an 711 | . . . . 5 ⊢ (mulGrp ↾ CRing):CRing⟶CMnd |
| 22 | fco2 6714 | . . . . 5 ⊢ (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd) | |
| 23 | 21, 4, 22 | sylancr 587 | . . . 4 ⊢ (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd) |
| 24 | 10, 2, 3, 23 | prdscmnd 19791 | . . 3 ⊢ (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd) |
| 25 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) | |
| 26 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
| 27 | 4 | ffnd 6689 | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 28 | 1, 26, 10, 2, 3, 27 | prdsmgp 20060 | . . . . 5 ⊢ (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))) |
| 29 | 28 | simpld 494 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
| 30 | 28 | simprd 495 | . . . . 5 ⊢ (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
| 31 | 30 | oveqdr 7415 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦)) |
| 32 | 25, 29, 31 | cmnpropd 19721 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)) |
| 33 | 24, 32 | mpbird 257 | . 2 ⊢ (𝜑 → (mulGrp‘𝑌) ∈ CMnd) |
| 34 | 26 | iscrng 20149 | . 2 ⊢ (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd)) |
| 35 | 9, 33, 34 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑌 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ↾ cres 5640 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Xscprds 17408 CMndccmn 19710 mulGrpcmgp 20049 Ringcrg 20142 CRingccrg 20143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 |
| This theorem is referenced by: pwscrng 20235 |
| Copyright terms: Public domain | W3C validator |