MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscrngd Structured version   Visualization version   GIF version

Theorem prdscrngd 19058
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdscrngd.y 𝑌 = (𝑆Xs𝑅)
prdscrngd.i (𝜑𝐼𝑊)
prdscrngd.s (𝜑𝑆𝑉)
prdscrngd.r (𝜑𝑅:𝐼⟶CRing)
Assertion
Ref Expression
prdscrngd (𝜑𝑌 ∈ CRing)

Proof of Theorem prdscrngd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdscrngd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdscrngd.i . . 3 (𝜑𝐼𝑊)
3 prdscrngd.s . . 3 (𝜑𝑆𝑉)
4 prdscrngd.r . . . 4 (𝜑𝑅:𝐼⟶CRing)
5 crngring 19003 . . . . 5 (𝑥 ∈ CRing → 𝑥 ∈ Ring)
65ssriv 3897 . . . 4 CRing ⊆ Ring
7 fss 6400 . . . 4 ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Ring)
91, 2, 3, 8prdsringd 19057 . 2 (𝜑𝑌 ∈ Ring)
10 eqid 2795 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 fnmgp 18936 . . . . . . 7 mulGrp Fn V
12 ssv 3916 . . . . . . 7 CRing ⊆ V
13 fnssres 6345 . . . . . . 7 ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing)
1411, 12, 13mp2an 688 . . . . . 6 (mulGrp ↾ CRing) Fn CRing
15 fvres 6562 . . . . . . . 8 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥))
16 eqid 2795 . . . . . . . . 9 (mulGrp‘𝑥) = (mulGrp‘𝑥)
1716crngmgp 19000 . . . . . . . 8 (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd)
1815, 17eqeltrd 2883 . . . . . . 7 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)
1918rgen 3115 . . . . . 6 𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd
20 ffnfv 6750 . . . . . 6 ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd))
2114, 19, 20mpbir2an 707 . . . . 5 (mulGrp ↾ CRing):CRing⟶CMnd
22 fco2 6406 . . . . 5 (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2321, 4, 22sylancr 587 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2410, 2, 3, 23prdscmnd 18709 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)
25 eqidd 2796 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
26 eqid 2795 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
274ffnd 6388 . . . . . 6 (𝜑𝑅 Fn 𝐼)
281, 26, 10, 2, 3, 27prdsmgp 19055 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
2928simpld 495 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
3028simprd 496 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
3130oveqdr 7049 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
3225, 29, 31cmnpropd 18647 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd))
3324, 32mpbird 258 . 2 (𝜑 → (mulGrp‘𝑌) ∈ CMnd)
3426iscrng 18999 . 2 (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd))
359, 33, 34sylanbrc 583 1 (𝜑𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  wss 3863  cres 5450  ccom 5452   Fn wfn 6225  wf 6226  cfv 6230  (class class class)co 7021  Basecbs 16317  +gcplusg 16399  Xscprds 16553  CMndccmn 18638  mulGrpcmgp 18934  Ringcrg 18992  CRingccrg 18993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-map 8263  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-sup 8757  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-fz 12748  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-plusg 16412  df-mulr 16413  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-hom 16423  df-cco 16424  df-0g 16549  df-prds 16555  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-grp 17869  df-minusg 17870  df-cmn 18640  df-mgp 18935  df-ring 18994  df-cring 18995
This theorem is referenced by:  pwscrng  19062
  Copyright terms: Public domain W3C validator