![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdscrngd | Structured version Visualization version GIF version |
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
prdscrngd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdscrngd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdscrngd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdscrngd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CRing) |
Ref | Expression |
---|---|
prdscrngd | ⊢ (𝜑 → 𝑌 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdscrngd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdscrngd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | prdscrngd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdscrngd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CRing) | |
5 | crngring 19003 | . . . . 5 ⊢ (𝑥 ∈ CRing → 𝑥 ∈ Ring) | |
6 | 5 | ssriv 3897 | . . . 4 ⊢ CRing ⊆ Ring |
7 | fss 6400 | . . . 4 ⊢ ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring) | |
8 | 4, 6, 7 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Ring) |
9 | 1, 2, 3, 8 | prdsringd 19057 | . 2 ⊢ (𝜑 → 𝑌 ∈ Ring) |
10 | eqid 2795 | . . . 4 ⊢ (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅)) | |
11 | fnmgp 18936 | . . . . . . 7 ⊢ mulGrp Fn V | |
12 | ssv 3916 | . . . . . . 7 ⊢ CRing ⊆ V | |
13 | fnssres 6345 | . . . . . . 7 ⊢ ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing) | |
14 | 11, 12, 13 | mp2an 688 | . . . . . 6 ⊢ (mulGrp ↾ CRing) Fn CRing |
15 | fvres 6562 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥)) | |
16 | eqid 2795 | . . . . . . . . 9 ⊢ (mulGrp‘𝑥) = (mulGrp‘𝑥) | |
17 | 16 | crngmgp 19000 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd) |
18 | 15, 17 | eqeltrd 2883 | . . . . . . 7 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd) |
19 | 18 | rgen 3115 | . . . . . 6 ⊢ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd |
20 | ffnfv 6750 | . . . . . 6 ⊢ ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)) | |
21 | 14, 19, 20 | mpbir2an 707 | . . . . 5 ⊢ (mulGrp ↾ CRing):CRing⟶CMnd |
22 | fco2 6406 | . . . . 5 ⊢ (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd) | |
23 | 21, 4, 22 | sylancr 587 | . . . 4 ⊢ (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd) |
24 | 10, 2, 3, 23 | prdscmnd 18709 | . . 3 ⊢ (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd) |
25 | eqidd 2796 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) | |
26 | eqid 2795 | . . . . . 6 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
27 | 4 | ffnd 6388 | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
28 | 1, 26, 10, 2, 3, 27 | prdsmgp 19055 | . . . . 5 ⊢ (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))) |
29 | 28 | simpld 495 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
30 | 28 | simprd 496 | . . . . 5 ⊢ (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
31 | 30 | oveqdr 7049 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦)) |
32 | 25, 29, 31 | cmnpropd 18647 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)) |
33 | 24, 32 | mpbird 258 | . 2 ⊢ (𝜑 → (mulGrp‘𝑌) ∈ CMnd) |
34 | 26 | iscrng 18999 | . 2 ⊢ (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd)) |
35 | 9, 33, 34 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑌 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 Vcvv 3437 ⊆ wss 3863 ↾ cres 5450 ∘ ccom 5452 Fn wfn 6225 ⟶wf 6226 ‘cfv 6230 (class class class)co 7021 Basecbs 16317 +gcplusg 16399 Xscprds 16553 CMndccmn 18638 mulGrpcmgp 18934 Ringcrg 18992 CRingccrg 18993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-1st 7550 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-oadd 7962 df-er 8144 df-map 8263 df-ixp 8316 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-sup 8757 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-dec 11953 df-uz 12099 df-fz 12748 df-struct 16319 df-ndx 16320 df-slot 16321 df-base 16323 df-sets 16324 df-plusg 16412 df-mulr 16413 df-sca 16415 df-vsca 16416 df-ip 16417 df-tset 16418 df-ple 16419 df-ds 16421 df-hom 16423 df-cco 16424 df-0g 16549 df-prds 16555 df-mgm 17686 df-sgrp 17728 df-mnd 17739 df-grp 17869 df-minusg 17870 df-cmn 18640 df-mgp 18935 df-ring 18994 df-cring 18995 |
This theorem is referenced by: pwscrng 19062 |
Copyright terms: Public domain | W3C validator |