Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdscrngd | Structured version Visualization version GIF version |
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
prdscrngd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdscrngd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdscrngd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdscrngd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CRing) |
Ref | Expression |
---|---|
prdscrngd | ⊢ (𝜑 → 𝑌 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdscrngd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdscrngd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | prdscrngd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdscrngd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CRing) | |
5 | crngring 19710 | . . . . 5 ⊢ (𝑥 ∈ CRing → 𝑥 ∈ Ring) | |
6 | 5 | ssriv 3921 | . . . 4 ⊢ CRing ⊆ Ring |
7 | fss 6601 | . . . 4 ⊢ ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring) | |
8 | 4, 6, 7 | sylancl 585 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Ring) |
9 | 1, 2, 3, 8 | prdsringd 19766 | . 2 ⊢ (𝜑 → 𝑌 ∈ Ring) |
10 | eqid 2738 | . . . 4 ⊢ (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅)) | |
11 | fnmgp 19637 | . . . . . . 7 ⊢ mulGrp Fn V | |
12 | ssv 3941 | . . . . . . 7 ⊢ CRing ⊆ V | |
13 | fnssres 6539 | . . . . . . 7 ⊢ ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing) | |
14 | 11, 12, 13 | mp2an 688 | . . . . . 6 ⊢ (mulGrp ↾ CRing) Fn CRing |
15 | fvres 6775 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥)) | |
16 | eqid 2738 | . . . . . . . . 9 ⊢ (mulGrp‘𝑥) = (mulGrp‘𝑥) | |
17 | 16 | crngmgp 19706 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd) |
18 | 15, 17 | eqeltrd 2839 | . . . . . . 7 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd) |
19 | 18 | rgen 3073 | . . . . . 6 ⊢ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd |
20 | ffnfv 6974 | . . . . . 6 ⊢ ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)) | |
21 | 14, 19, 20 | mpbir2an 707 | . . . . 5 ⊢ (mulGrp ↾ CRing):CRing⟶CMnd |
22 | fco2 6611 | . . . . 5 ⊢ (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd) | |
23 | 21, 4, 22 | sylancr 586 | . . . 4 ⊢ (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd) |
24 | 10, 2, 3, 23 | prdscmnd 19377 | . . 3 ⊢ (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd) |
25 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) | |
26 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
27 | 4 | ffnd 6585 | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
28 | 1, 26, 10, 2, 3, 27 | prdsmgp 19764 | . . . . 5 ⊢ (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))) |
29 | 28 | simpld 494 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
30 | 28 | simprd 495 | . . . . 5 ⊢ (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
31 | 30 | oveqdr 7283 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦)) |
32 | 25, 29, 31 | cmnpropd 19311 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)) |
33 | 24, 32 | mpbird 256 | . 2 ⊢ (𝜑 → (mulGrp‘𝑌) ∈ CMnd) |
34 | 26 | iscrng 19705 | . 2 ⊢ (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd)) |
35 | 9, 33, 34 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑌 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ↾ cres 5582 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Xscprds 17073 CMndccmn 19301 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-cmn 19303 df-mgp 19636 df-ring 19700 df-cring 19701 |
This theorem is referenced by: pwscrng 19771 |
Copyright terms: Public domain | W3C validator |