![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdscrngd | Structured version Visualization version GIF version |
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
prdscrngd.y | β’ π = (πXsπ ) |
prdscrngd.i | β’ (π β πΌ β π) |
prdscrngd.s | β’ (π β π β π) |
prdscrngd.r | β’ (π β π :πΌβΆCRing) |
Ref | Expression |
---|---|
prdscrngd | β’ (π β π β CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdscrngd.y | . . 3 β’ π = (πXsπ ) | |
2 | prdscrngd.i | . . 3 β’ (π β πΌ β π) | |
3 | prdscrngd.s | . . 3 β’ (π β π β π) | |
4 | prdscrngd.r | . . . 4 β’ (π β π :πΌβΆCRing) | |
5 | crngring 20067 | . . . . 5 β’ (π₯ β CRing β π₯ β Ring) | |
6 | 5 | ssriv 3986 | . . . 4 β’ CRing β Ring |
7 | fss 6734 | . . . 4 β’ ((π :πΌβΆCRing β§ CRing β Ring) β π :πΌβΆRing) | |
8 | 4, 6, 7 | sylancl 586 | . . 3 β’ (π β π :πΌβΆRing) |
9 | 1, 2, 3, 8 | prdsringd 20133 | . 2 β’ (π β π β Ring) |
10 | eqid 2732 | . . . 4 β’ (πXs(mulGrp β π )) = (πXs(mulGrp β π )) | |
11 | fnmgp 19988 | . . . . . . 7 β’ mulGrp Fn V | |
12 | ssv 4006 | . . . . . . 7 β’ CRing β V | |
13 | fnssres 6673 | . . . . . . 7 β’ ((mulGrp Fn V β§ CRing β V) β (mulGrp βΎ CRing) Fn CRing) | |
14 | 11, 12, 13 | mp2an 690 | . . . . . 6 β’ (mulGrp βΎ CRing) Fn CRing |
15 | fvres 6910 | . . . . . . . 8 β’ (π₯ β CRing β ((mulGrp βΎ CRing)βπ₯) = (mulGrpβπ₯)) | |
16 | eqid 2732 | . . . . . . . . 9 β’ (mulGrpβπ₯) = (mulGrpβπ₯) | |
17 | 16 | crngmgp 20063 | . . . . . . . 8 β’ (π₯ β CRing β (mulGrpβπ₯) β CMnd) |
18 | 15, 17 | eqeltrd 2833 | . . . . . . 7 β’ (π₯ β CRing β ((mulGrp βΎ CRing)βπ₯) β CMnd) |
19 | 18 | rgen 3063 | . . . . . 6 β’ βπ₯ β CRing ((mulGrp βΎ CRing)βπ₯) β CMnd |
20 | ffnfv 7117 | . . . . . 6 β’ ((mulGrp βΎ CRing):CRingβΆCMnd β ((mulGrp βΎ CRing) Fn CRing β§ βπ₯ β CRing ((mulGrp βΎ CRing)βπ₯) β CMnd)) | |
21 | 14, 19, 20 | mpbir2an 709 | . . . . 5 β’ (mulGrp βΎ CRing):CRingβΆCMnd |
22 | fco2 6744 | . . . . 5 β’ (((mulGrp βΎ CRing):CRingβΆCMnd β§ π :πΌβΆCRing) β (mulGrp β π ):πΌβΆCMnd) | |
23 | 21, 4, 22 | sylancr 587 | . . . 4 β’ (π β (mulGrp β π ):πΌβΆCMnd) |
24 | 10, 2, 3, 23 | prdscmnd 19728 | . . 3 β’ (π β (πXs(mulGrp β π )) β CMnd) |
25 | eqidd 2733 | . . . 4 β’ (π β (Baseβ(mulGrpβπ)) = (Baseβ(mulGrpβπ))) | |
26 | eqid 2732 | . . . . . 6 β’ (mulGrpβπ) = (mulGrpβπ) | |
27 | 4 | ffnd 6718 | . . . . . 6 β’ (π β π Fn πΌ) |
28 | 1, 26, 10, 2, 3, 27 | prdsmgp 20131 | . . . . 5 β’ (π β ((Baseβ(mulGrpβπ)) = (Baseβ(πXs(mulGrp β π ))) β§ (+gβ(mulGrpβπ)) = (+gβ(πXs(mulGrp β π ))))) |
29 | 28 | simpld 495 | . . . 4 β’ (π β (Baseβ(mulGrpβπ)) = (Baseβ(πXs(mulGrp β π )))) |
30 | 28 | simprd 496 | . . . . 5 β’ (π β (+gβ(mulGrpβπ)) = (+gβ(πXs(mulGrp β π )))) |
31 | 30 | oveqdr 7436 | . . . 4 β’ ((π β§ (π₯ β (Baseβ(mulGrpβπ)) β§ π¦ β (Baseβ(mulGrpβπ)))) β (π₯(+gβ(mulGrpβπ))π¦) = (π₯(+gβ(πXs(mulGrp β π )))π¦)) |
32 | 25, 29, 31 | cmnpropd 19658 | . . 3 β’ (π β ((mulGrpβπ) β CMnd β (πXs(mulGrp β π )) β CMnd)) |
33 | 24, 32 | mpbird 256 | . 2 β’ (π β (mulGrpβπ) β CMnd) |
34 | 26 | iscrng 20062 | . 2 β’ (π β CRing β (π β Ring β§ (mulGrpβπ) β CMnd)) |
35 | 9, 33, 34 | sylanbrc 583 | 1 β’ (π β π β CRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 β wss 3948 βΎ cres 5678 β ccom 5680 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Xscprds 17390 CMndccmn 19647 mulGrpcmgp 19986 Ringcrg 20055 CRingccrg 20056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-cmn 19649 df-mgp 19987 df-ring 20057 df-cring 20058 |
This theorem is referenced by: pwscrng 20138 |
Copyright terms: Public domain | W3C validator |