| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdscrngd | Structured version Visualization version GIF version | ||
| Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| prdscrngd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdscrngd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdscrngd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdscrngd.r | ⊢ (𝜑 → 𝑅:𝐼⟶CRing) |
| Ref | Expression |
|---|---|
| prdscrngd | ⊢ (𝜑 → 𝑌 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdscrngd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 2 | prdscrngd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | prdscrngd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdscrngd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶CRing) | |
| 5 | crngring 20158 | . . . . 5 ⊢ (𝑥 ∈ CRing → 𝑥 ∈ Ring) | |
| 6 | 5 | ssriv 3933 | . . . 4 ⊢ CRing ⊆ Ring |
| 7 | fss 6662 | . . . 4 ⊢ ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring) | |
| 8 | 4, 6, 7 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Ring) |
| 9 | 1, 2, 3, 8 | prdsringd 20234 | . 2 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 10 | eqid 2731 | . . . 4 ⊢ (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅)) | |
| 11 | fnmgp 20055 | . . . . . . 7 ⊢ mulGrp Fn V | |
| 12 | ssv 3954 | . . . . . . 7 ⊢ CRing ⊆ V | |
| 13 | fnssres 6599 | . . . . . . 7 ⊢ ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . . . 6 ⊢ (mulGrp ↾ CRing) Fn CRing |
| 15 | fvres 6836 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥)) | |
| 16 | eqid 2731 | . . . . . . . . 9 ⊢ (mulGrp‘𝑥) = (mulGrp‘𝑥) | |
| 17 | 16 | crngmgp 20154 | . . . . . . . 8 ⊢ (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd) |
| 18 | 15, 17 | eqeltrd 2831 | . . . . . . 7 ⊢ (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd) |
| 19 | 18 | rgen 3049 | . . . . . 6 ⊢ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd |
| 20 | ffnfv 7047 | . . . . . 6 ⊢ ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)) | |
| 21 | 14, 19, 20 | mpbir2an 711 | . . . . 5 ⊢ (mulGrp ↾ CRing):CRing⟶CMnd |
| 22 | fco2 6672 | . . . . 5 ⊢ (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd) | |
| 23 | 21, 4, 22 | sylancr 587 | . . . 4 ⊢ (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd) |
| 24 | 10, 2, 3, 23 | prdscmnd 19768 | . . 3 ⊢ (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd) |
| 25 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) | |
| 26 | eqid 2731 | . . . . . 6 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
| 27 | 4 | ffnd 6647 | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 28 | 1, 26, 10, 2, 3, 27 | prdsmgp 20064 | . . . . 5 ⊢ (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))) |
| 29 | 28 | simpld 494 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
| 30 | 28 | simprd 495 | . . . . 5 ⊢ (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
| 31 | 30 | oveqdr 7369 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦)) |
| 32 | 25, 29, 31 | cmnpropd 19698 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)) |
| 33 | 24, 32 | mpbird 257 | . 2 ⊢ (𝜑 → (mulGrp‘𝑌) ∈ CMnd) |
| 34 | 26 | iscrng 20153 | . 2 ⊢ (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd)) |
| 35 | 9, 33, 34 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑌 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ↾ cres 5613 ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Xscprds 17344 CMndccmn 19687 mulGrpcmgp 20053 Ringcrg 20146 CRingccrg 20147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-prds 17346 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 |
| This theorem is referenced by: pwscrng 20239 |
| Copyright terms: Public domain | W3C validator |