![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrcrng | Structured version Visualization version GIF version |
Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
psrcnrg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrcnrg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrcnrg.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
psrcrng | ⊢ (𝜑 → 𝑆 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrcnrg.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psrcnrg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | psrcnrg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
4 | crngring 19043 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
6 | 1, 2, 5 | psrring 19917 | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) |
7 | eqid 2771 | . . . . 5 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
8 | eqid 2771 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | 7, 8 | mgpbas 18980 | . . . 4 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (Base‘𝑆) = (Base‘(mulGrp‘𝑆))) |
11 | eqid 2771 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
12 | 7, 11 | mgpplusg 18978 | . . . 4 ⊢ (.r‘𝑆) = (+g‘(mulGrp‘𝑆)) |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → (.r‘𝑆) = (+g‘(mulGrp‘𝑆))) |
14 | 7 | ringmgp 19038 | . . . 4 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
15 | 6, 14 | syl 17 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
16 | 2 | 3ad2ant1 1114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐼 ∈ 𝑉) |
17 | 5 | 3ad2ant1 1114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
18 | eqid 2771 | . . . 4 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | simp2 1118 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
20 | simp3 1119 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆)) | |
21 | 3 | 3ad2ant1 1114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ CRing) |
22 | 1, 16, 17, 18, 11, 8, 19, 20, 21 | psrcom 19915 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)𝑦) = (𝑦(.r‘𝑆)𝑥)) |
23 | 10, 13, 15, 22 | iscmnd 18690 | . 2 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ CMnd) |
24 | 7 | iscrng 19039 | . 2 ⊢ (𝑆 ∈ CRing ↔ (𝑆 ∈ Ring ∧ (mulGrp‘𝑆) ∈ CMnd)) |
25 | 6, 23, 24 | sylanbrc 575 | 1 ⊢ (𝜑 → 𝑆 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 {crab 3085 ◡ccnv 5402 “ cima 5406 ‘cfv 6185 (class class class)co 6974 ↑𝑚 cmap 8204 Fincfn 8304 ℕcn 11437 ℕ0cn0 11705 Basecbs 16337 +gcplusg 16419 .rcmulr 16420 Mndcmnd 17774 CMndccmn 18678 mulGrpcmgp 18974 Ringcrg 19032 CRingccrg 19033 mPwSer cmps 19857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-ofr 7226 df-om 7395 df-1st 7499 df-2nd 7500 df-supp 7632 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-map 8206 df-pm 8207 df-ixp 8258 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fsupp 8627 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 df-fzo 12848 df-seq 13183 df-hash 13504 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-sca 16435 df-vsca 16436 df-tset 16438 df-0g 16569 df-gsum 16570 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-submnd 17816 df-grp 17906 df-minusg 17907 df-mulg 18024 df-ghm 18139 df-cntz 18230 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-cring 19035 df-psr 19862 |
This theorem is referenced by: mplcrng 19959 opsrcrng 19993 |
Copyright terms: Public domain | W3C validator |