Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntrcrng Structured version   Visualization version   GIF version

Theorem cntrcrng 33074
Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcrng.z 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
Assertion
Ref Expression
cntrcrng (𝑅 ∈ Ring → 𝑍 ∈ CRing)

Proof of Theorem cntrcrng
StepHypRef Expression
1 eqid 2736 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20143 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4 eqid 2736 . . . . 5 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
53, 4cntrval 19338 . . . 4 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
6 ssid 4005 . . . . 5 (Base‘𝑅) ⊆ (Base‘𝑅)
72, 1, 4cntzsubr 20607 . . . . 5 ((𝑅 ∈ Ring ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
86, 7mpan2 691 . . . 4 (𝑅 ∈ Ring → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
95, 8eqeltrrid 2845 . . 3 (𝑅 ∈ Ring → (Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅))
10 cntrcrng.z . . . 4 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
1110subrgring 20575 . . 3 ((Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅) → 𝑍 ∈ Ring)
129, 11syl 17 . 2 (𝑅 ∈ Ring → 𝑍 ∈ Ring)
13 fvex 6918 . . . 4 (Cntr‘(mulGrp‘𝑅)) ∈ V
1410, 1mgpress 20148 . . . 4 ((𝑅 ∈ Ring ∧ (Cntr‘(mulGrp‘𝑅)) ∈ V) → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
1513, 14mpan2 691 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
161ringmgp 20237 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
17 eqid 2736 . . . . 5 ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅)))
1817cntrcmnd 19861 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
2015, 19eqeltrrd 2841 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑍) ∈ CMnd)
21 eqid 2736 . . 3 (mulGrp‘𝑍) = (mulGrp‘𝑍)
2221iscrng 20238 . 2 (𝑍 ∈ CRing ↔ (𝑍 ∈ Ring ∧ (mulGrp‘𝑍) ∈ CMnd))
2312, 20, 22sylanbrc 583 1 (𝑅 ∈ Ring → 𝑍 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3479  wss 3950  cfv 6560  (class class class)co 7432  Basecbs 17248  s cress 17275  Mndcmnd 18748  Cntzccntz 19334  Cntrccntr 19335  CMndccmn 19799  mulGrpcmgp 20138  Ringcrg 20231  CRingccrg 20232  SubRingcsubrg 20570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-subg 19142  df-cntz 19336  df-cntr 19337  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-subrng 20547  df-subrg 20571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator