| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntrcrng | Structured version Visualization version GIF version | ||
| Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| Ref | Expression |
|---|---|
| cntrcrng.z | ⊢ 𝑍 = (𝑅 ↾s (Cntr‘(mulGrp‘𝑅))) |
| Ref | Expression |
|---|---|
| cntrcrng | ⊢ (𝑅 ∈ Ring → 𝑍 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | mgpbas 20065 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
| 4 | eqid 2729 | . . . . 5 ⊢ (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅)) | |
| 5 | 3, 4 | cntrval 19233 | . . . 4 ⊢ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅)) |
| 6 | ssid 3966 | . . . . 5 ⊢ (Base‘𝑅) ⊆ (Base‘𝑅) | |
| 7 | 2, 1, 4 | cntzsubr 20526 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅)) |
| 8 | 6, 7 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ Ring → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅)) |
| 9 | 5, 8 | eqeltrrid 2833 | . . 3 ⊢ (𝑅 ∈ Ring → (Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅)) |
| 10 | cntrcrng.z | . . . 4 ⊢ 𝑍 = (𝑅 ↾s (Cntr‘(mulGrp‘𝑅))) | |
| 11 | 10 | subrgring 20494 | . . 3 ⊢ ((Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅) → 𝑍 ∈ Ring) |
| 12 | 9, 11 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → 𝑍 ∈ Ring) |
| 13 | fvex 6853 | . . . 4 ⊢ (Cntr‘(mulGrp‘𝑅)) ∈ V | |
| 14 | 10, 1 | mgpress 20070 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (Cntr‘(mulGrp‘𝑅)) ∈ V) → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍)) |
| 15 | 13, 14 | mpan2 691 | . . 3 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍)) |
| 16 | 1 | ringmgp 20159 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 17 | eqid 2729 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) | |
| 18 | 17 | cntrcmnd 19756 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ Mnd → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd) |
| 19 | 16, 18 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd) |
| 20 | 15, 19 | eqeltrrd 2829 | . 2 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑍) ∈ CMnd) |
| 21 | eqid 2729 | . . 3 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 22 | 21 | iscrng 20160 | . 2 ⊢ (𝑍 ∈ CRing ↔ (𝑍 ∈ Ring ∧ (mulGrp‘𝑍) ∈ CMnd)) |
| 23 | 12, 20, 22 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ Ring → 𝑍 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 Mndcmnd 18643 Cntzccntz 19229 Cntrccntr 19230 CMndccmn 19694 mulGrpcmgp 20060 Ringcrg 20153 CRingccrg 20154 SubRingcsubrg 20489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-subg 19037 df-cntz 19231 df-cntr 19232 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-subrng 20466 df-subrg 20490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |