Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntrcrng Structured version   Visualization version   GIF version

Theorem cntrcrng 32201
Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcrng.z 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
Assertion
Ref Expression
cntrcrng (𝑅 ∈ Ring → 𝑍 ∈ CRing)

Proof of Theorem cntrcrng
StepHypRef Expression
1 eqid 2732 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2732 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 19987 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4 eqid 2732 . . . . 5 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
53, 4cntrval 19177 . . . 4 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
6 ssid 4003 . . . . 5 (Base‘𝑅) ⊆ (Base‘𝑅)
72, 1, 4cntzsubr 20390 . . . . 5 ((𝑅 ∈ Ring ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
86, 7mpan2 689 . . . 4 (𝑅 ∈ Ring → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
95, 8eqeltrrid 2838 . . 3 (𝑅 ∈ Ring → (Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅))
10 cntrcrng.z . . . 4 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
1110subrgring 20358 . . 3 ((Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅) → 𝑍 ∈ Ring)
129, 11syl 17 . 2 (𝑅 ∈ Ring → 𝑍 ∈ Ring)
13 fvex 6901 . . . 4 (Cntr‘(mulGrp‘𝑅)) ∈ V
1410, 1mgpress 19996 . . . 4 ((𝑅 ∈ Ring ∧ (Cntr‘(mulGrp‘𝑅)) ∈ V) → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
1513, 14mpan2 689 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
161ringmgp 20055 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
17 eqid 2732 . . . . 5 ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅)))
1817cntrcmnd 19704 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
2015, 19eqeltrrd 2834 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑍) ∈ CMnd)
21 eqid 2732 . . 3 (mulGrp‘𝑍) = (mulGrp‘𝑍)
2221iscrng 20056 . 2 (𝑍 ∈ CRing ↔ (𝑍 ∈ Ring ∧ (mulGrp‘𝑍) ∈ CMnd))
2312, 20, 22sylanbrc 583 1 (𝑅 ∈ Ring → 𝑍 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  wss 3947  cfv 6540  (class class class)co 7405  Basecbs 17140  s cress 17169  Mndcmnd 18621  Cntzccntz 19173  Cntrccntr 19174  CMndccmn 19642  mulGrpcmgp 19981  Ringcrg 20049  CRingccrg 20050  SubRingcsubrg 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-subg 18997  df-cntz 19175  df-cntr 19176  df-cmn 19644  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator