Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntrcrng Structured version   Visualization version   GIF version

Theorem cntrcrng 31322
Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcrng.z 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
Assertion
Ref Expression
cntrcrng (𝑅 ∈ Ring → 𝑍 ∈ CRing)

Proof of Theorem cntrcrng
StepHypRef Expression
1 eqid 2738 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 19726 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4 eqid 2738 . . . . 5 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
53, 4cntrval 18925 . . . 4 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
6 ssid 3943 . . . . 5 (Base‘𝑅) ⊆ (Base‘𝑅)
72, 1, 4cntzsubr 20057 . . . . 5 ((𝑅 ∈ Ring ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
86, 7mpan2 688 . . . 4 (𝑅 ∈ Ring → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
95, 8eqeltrrid 2844 . . 3 (𝑅 ∈ Ring → (Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅))
10 cntrcrng.z . . . 4 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
1110subrgring 20027 . . 3 ((Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅) → 𝑍 ∈ Ring)
129, 11syl 17 . 2 (𝑅 ∈ Ring → 𝑍 ∈ Ring)
13 fvex 6787 . . . 4 (Cntr‘(mulGrp‘𝑅)) ∈ V
1410, 1mgpress 19735 . . . 4 ((𝑅 ∈ Ring ∧ (Cntr‘(mulGrp‘𝑅)) ∈ V) → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
1513, 14mpan2 688 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
161ringmgp 19789 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
17 eqid 2738 . . . . 5 ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅)))
1817cntrcmnd 19443 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
2015, 19eqeltrrd 2840 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑍) ∈ CMnd)
21 eqid 2738 . . 3 (mulGrp‘𝑍) = (mulGrp‘𝑍)
2221iscrng 19790 . 2 (𝑍 ∈ CRing ↔ (𝑍 ∈ Ring ∧ (mulGrp‘𝑍) ∈ CMnd))
2312, 20, 22sylanbrc 583 1 (𝑅 ∈ Ring → 𝑍 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Mndcmnd 18385  Cntzccntz 18921  Cntrccntr 18922  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784  SubRingcsubrg 20020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-cntz 18923  df-cntr 18924  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator