Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntrcrng Structured version   Visualization version   GIF version

Theorem cntrcrng 33023
Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
cntrcrng.z 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
Assertion
Ref Expression
cntrcrng (𝑅 ∈ Ring → 𝑍 ∈ CRing)

Proof of Theorem cntrcrng
StepHypRef Expression
1 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20030 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4 eqid 2729 . . . . 5 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
53, 4cntrval 19198 . . . 4 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
6 ssid 3958 . . . . 5 (Base‘𝑅) ⊆ (Base‘𝑅)
72, 1, 4cntzsubr 20491 . . . . 5 ((𝑅 ∈ Ring ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
86, 7mpan2 691 . . . 4 (𝑅 ∈ Ring → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅))
95, 8eqeltrrid 2833 . . 3 (𝑅 ∈ Ring → (Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅))
10 cntrcrng.z . . . 4 𝑍 = (𝑅s (Cntr‘(mulGrp‘𝑅)))
1110subrgring 20459 . . 3 ((Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅) → 𝑍 ∈ Ring)
129, 11syl 17 . 2 (𝑅 ∈ Ring → 𝑍 ∈ Ring)
13 fvex 6835 . . . 4 (Cntr‘(mulGrp‘𝑅)) ∈ V
1410, 1mgpress 20035 . . . 4 ((𝑅 ∈ Ring ∧ (Cntr‘(mulGrp‘𝑅)) ∈ V) → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
1513, 14mpan2 691 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍))
161ringmgp 20124 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
17 eqid 2729 . . . . 5 ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅)))
1817cntrcmnd 19721 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd)
2015, 19eqeltrrd 2829 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑍) ∈ CMnd)
21 eqid 2729 . . 3 (mulGrp‘𝑍) = (mulGrp‘𝑍)
2221iscrng 20125 . 2 (𝑍 ∈ CRing ↔ (𝑍 ∈ Ring ∧ (mulGrp‘𝑍) ∈ CMnd))
2312, 20, 22sylanbrc 583 1 (𝑅 ∈ Ring → 𝑍 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  Mndcmnd 18608  Cntzccntz 19194  Cntrccntr 19195  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  SubRingcsubrg 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-subg 19002  df-cntz 19196  df-cntr 19197  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator