![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cntrcrng | Structured version Visualization version GIF version |
Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
cntrcrng.z | ⊢ 𝑍 = (𝑅 ↾s (Cntr‘(mulGrp‘𝑅))) |
Ref | Expression |
---|---|
cntrcrng | ⊢ (𝑅 ∈ Ring → 𝑍 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 20118 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
4 | eqid 2726 | . . . . 5 ⊢ (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅)) | |
5 | 3, 4 | cntrval 19308 | . . . 4 ⊢ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅)) |
6 | ssid 4003 | . . . . 5 ⊢ (Base‘𝑅) ⊆ (Base‘𝑅) | |
7 | 2, 1, 4 | cntzsubr 20585 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅)) |
8 | 6, 7 | mpan2 689 | . . . 4 ⊢ (𝑅 ∈ Ring → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubRing‘𝑅)) |
9 | 5, 8 | eqeltrrid 2831 | . . 3 ⊢ (𝑅 ∈ Ring → (Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅)) |
10 | cntrcrng.z | . . . 4 ⊢ 𝑍 = (𝑅 ↾s (Cntr‘(mulGrp‘𝑅))) | |
11 | 10 | subrgring 20553 | . . 3 ⊢ ((Cntr‘(mulGrp‘𝑅)) ∈ (SubRing‘𝑅) → 𝑍 ∈ Ring) |
12 | 9, 11 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → 𝑍 ∈ Ring) |
13 | fvex 6905 | . . . 4 ⊢ (Cntr‘(mulGrp‘𝑅)) ∈ V | |
14 | 10, 1 | mgpress 20127 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (Cntr‘(mulGrp‘𝑅)) ∈ V) → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍)) |
15 | 13, 14 | mpan2 689 | . . 3 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = (mulGrp‘𝑍)) |
16 | 1 | ringmgp 20217 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
17 | eqid 2726 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) = ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) | |
18 | 17 | cntrcmnd 19835 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ Mnd → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd) |
19 | 16, 18 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Cntr‘(mulGrp‘𝑅))) ∈ CMnd) |
20 | 15, 19 | eqeltrrd 2827 | . 2 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑍) ∈ CMnd) |
21 | eqid 2726 | . . 3 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
22 | 21 | iscrng 20218 | . 2 ⊢ (𝑍 ∈ CRing ↔ (𝑍 ∈ Ring ∧ (mulGrp‘𝑍) ∈ CMnd)) |
23 | 12, 20, 22 | sylanbrc 581 | 1 ⊢ (𝑅 ∈ Ring → 𝑍 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3464 ⊆ wss 3948 ‘cfv 6545 (class class class)co 7415 Basecbs 17207 ↾s cress 17236 Mndcmnd 18721 Cntzccntz 19304 Cntrccntr 19305 CMndccmn 19773 mulGrpcmgp 20112 Ringcrg 20211 CRingccrg 20212 SubRingcsubrg 20546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-2 12320 df-3 12321 df-sets 17160 df-slot 17178 df-ndx 17190 df-base 17208 df-ress 17237 df-plusg 17273 df-mulr 17274 df-0g 17450 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18768 df-grp 18925 df-minusg 18926 df-subg 19112 df-cntz 19306 df-cntr 19307 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-ring 20213 df-cring 20214 df-subrng 20523 df-subrg 20548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |