![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dirref | Structured version Visualization version GIF version |
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
dirref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
dirref | ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dirref.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
2 | dirdm 18592 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) | |
3 | 1, 2 | eqtrid 2777 | . . . . 5 ⊢ (𝑅 ∈ DirRel → 𝑋 = ∪ ∪ 𝑅) |
4 | 3 | reseq2d 5984 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ ∪ ∪ 𝑅)) |
5 | eqid 2725 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
6 | 5 | isdir 18590 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
7 | 6 | ibi 266 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
8 | 7 | simplrd 768 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
9 | 4, 8 | eqsstrd 4016 | . . 3 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅) |
10 | 9 | ssbrd 5191 | . 2 ⊢ (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴 → 𝐴𝑅𝐴)) |
11 | eqid 2725 | . . 3 ⊢ 𝐴 = 𝐴 | |
12 | resieq 5995 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) | |
13 | 12 | anidms 565 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) |
14 | 11, 13 | mpbiri 257 | . 2 ⊢ (𝐴 ∈ 𝑋 → 𝐴( I ↾ 𝑋)𝐴) |
15 | 10, 14 | impel 504 | 1 ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3945 ∪ cuni 4908 class class class wbr 5148 I cid 5574 × cxp 5675 ◡ccnv 5676 dom cdm 5677 ↾ cres 5679 ∘ ccom 5681 Rel wrel 5682 DirRelcdir 18586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-dir 18588 |
This theorem is referenced by: tailini 35947 |
Copyright terms: Public domain | W3C validator |