| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dirref | Structured version Visualization version GIF version | ||
| Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| dirref.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| dirref | ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dirref.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
| 2 | dirdm 18610 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) | |
| 3 | 1, 2 | eqtrid 2782 | . . . . 5 ⊢ (𝑅 ∈ DirRel → 𝑋 = ∪ ∪ 𝑅) |
| 4 | 3 | reseq2d 5966 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ ∪ ∪ 𝑅)) |
| 5 | eqid 2735 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
| 6 | 5 | isdir 18608 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
| 7 | 6 | ibi 267 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
| 8 | 7 | simplrd 769 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
| 9 | 4, 8 | eqsstrd 3993 | . . 3 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅) |
| 10 | 9 | ssbrd 5162 | . 2 ⊢ (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴 → 𝐴𝑅𝐴)) |
| 11 | eqid 2735 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 12 | resieq 5977 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) | |
| 13 | 12 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) |
| 14 | 11, 13 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ 𝑋 → 𝐴( I ↾ 𝑋)𝐴) |
| 15 | 10, 14 | impel 505 | 1 ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 I cid 5547 × cxp 5652 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 ∘ ccom 5658 Rel wrel 5659 DirRelcdir 18604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-dir 18606 |
| This theorem is referenced by: tailini 36394 |
| Copyright terms: Public domain | W3C validator |