MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirref Structured version   Visualization version   GIF version

Theorem dirref 18566
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirref.1 𝑋 = dom 𝑅
Assertion
Ref Expression
dirref ((𝑅 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)

Proof of Theorem dirref
StepHypRef Expression
1 dirref.1 . . . . . 6 𝑋 = dom 𝑅
2 dirdm 18565 . . . . . 6 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
31, 2eqtrid 2777 . . . . 5 (𝑅 ∈ DirRel → 𝑋 = 𝑅)
43reseq2d 5952 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ 𝑅))
5 eqid 2730 . . . . . . 7 𝑅 = 𝑅
65isdir 18563 . . . . . 6 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
76ibi 267 . . . . 5 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
87simplrd 769 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
94, 8eqsstrd 3983 . . 3 (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅)
109ssbrd 5152 . 2 (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴𝐴𝑅𝐴))
11 eqid 2730 . . 3 𝐴 = 𝐴
12 resieq 5963 . . . 4 ((𝐴𝑋𝐴𝑋) → (𝐴( I ↾ 𝑋)𝐴𝐴 = 𝐴))
1312anidms 566 . . 3 (𝐴𝑋 → (𝐴( I ↾ 𝑋)𝐴𝐴 = 𝐴))
1411, 13mpbiri 258 . 2 (𝐴𝑋𝐴( I ↾ 𝑋)𝐴)
1510, 14impel 505 1 ((𝑅 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3916   cuni 4873   class class class wbr 5109   I cid 5534   × cxp 5638  ccnv 5639  dom cdm 5640  cres 5642  ccom 5644  Rel wrel 5645  DirRelcdir 18559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-dir 18561
This theorem is referenced by:  tailini  36359
  Copyright terms: Public domain W3C validator