MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirref Structured version   Visualization version   GIF version

Theorem dirref 18509
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirref.1 𝑋 = dom 𝑅
Assertion
Ref Expression
dirref ((𝑅 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)

Proof of Theorem dirref
StepHypRef Expression
1 dirref.1 . . . . . 6 𝑋 = dom 𝑅
2 dirdm 18508 . . . . . 6 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
31, 2eqtrid 2780 . . . . 5 (𝑅 ∈ DirRel → 𝑋 = 𝑅)
43reseq2d 5932 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ 𝑅))
5 eqid 2733 . . . . . . 7 𝑅 = 𝑅
65isdir 18506 . . . . . 6 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
76ibi 267 . . . . 5 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
87simplrd 769 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
94, 8eqsstrd 3965 . . 3 (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅)
109ssbrd 5136 . 2 (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴𝐴𝑅𝐴))
11 eqid 2733 . . 3 𝐴 = 𝐴
12 resieq 5943 . . . 4 ((𝐴𝑋𝐴𝑋) → (𝐴( I ↾ 𝑋)𝐴𝐴 = 𝐴))
1312anidms 566 . . 3 (𝐴𝑋 → (𝐴( I ↾ 𝑋)𝐴𝐴 = 𝐴))
1411, 13mpbiri 258 . 2 (𝐴𝑋𝐴( I ↾ 𝑋)𝐴)
1510, 14impel 505 1 ((𝑅 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898   cuni 4858   class class class wbr 5093   I cid 5513   × cxp 5617  ccnv 5618  dom cdm 5619  cres 5621  ccom 5623  Rel wrel 5624  DirRelcdir 18502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-dir 18504
This theorem is referenced by:  tailini  36441
  Copyright terms: Public domain W3C validator