MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirref Structured version   Visualization version   GIF version

Theorem dirref 18558
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirref.1 𝑋 = dom 𝑅
Assertion
Ref Expression
dirref ((𝑅 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)

Proof of Theorem dirref
StepHypRef Expression
1 dirref.1 . . . . . 6 𝑋 = dom 𝑅
2 dirdm 18557 . . . . . 6 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
31, 2eqtrid 2784 . . . . 5 (𝑅 ∈ DirRel → 𝑋 = 𝑅)
43reseq2d 5981 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ 𝑅))
5 eqid 2732 . . . . . . 7 𝑅 = 𝑅
65isdir 18555 . . . . . 6 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
76ibi 266 . . . . 5 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
87simplrd 768 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
94, 8eqsstrd 4020 . . 3 (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅)
109ssbrd 5191 . 2 (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴𝐴𝑅𝐴))
11 eqid 2732 . . 3 𝐴 = 𝐴
12 resieq 5992 . . . 4 ((𝐴𝑋𝐴𝑋) → (𝐴( I ↾ 𝑋)𝐴𝐴 = 𝐴))
1312anidms 567 . . 3 (𝐴𝑋 → (𝐴( I ↾ 𝑋)𝐴𝐴 = 𝐴))
1411, 13mpbiri 257 . 2 (𝐴𝑋𝐴( I ↾ 𝑋)𝐴)
1510, 14impel 506 1 ((𝑅 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3948   cuni 4908   class class class wbr 5148   I cid 5573   × cxp 5674  ccnv 5675  dom cdm 5676  cres 5678  ccom 5680  Rel wrel 5681  DirRelcdir 18551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-dir 18553
This theorem is referenced by:  tailini  35564
  Copyright terms: Public domain W3C validator