![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dirref | Structured version Visualization version GIF version |
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
dirref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
dirref | ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dirref.1 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
2 | dirdm 18583 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) | |
3 | 1, 2 | eqtrid 2779 | . . . . 5 ⊢ (𝑅 ∈ DirRel → 𝑋 = ∪ ∪ 𝑅) |
4 | 3 | reseq2d 5979 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ ∪ ∪ 𝑅)) |
5 | eqid 2727 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
6 | 5 | isdir 18581 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
7 | 6 | ibi 267 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
8 | 7 | simplrd 769 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
9 | 4, 8 | eqsstrd 4016 | . . 3 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅) |
10 | 9 | ssbrd 5185 | . 2 ⊢ (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴 → 𝐴𝑅𝐴)) |
11 | eqid 2727 | . . 3 ⊢ 𝐴 = 𝐴 | |
12 | resieq 5990 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) | |
13 | 12 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) |
14 | 11, 13 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ 𝑋 → 𝐴( I ↾ 𝑋)𝐴) |
15 | 10, 14 | impel 505 | 1 ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 ∪ cuni 4903 class class class wbr 5142 I cid 5569 × cxp 5670 ◡ccnv 5671 dom cdm 5672 ↾ cres 5674 ∘ ccom 5676 Rel wrel 5677 DirRelcdir 18577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-dir 18579 |
This theorem is referenced by: tailini 35796 |
Copyright terms: Public domain | W3C validator |