| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exidres | Structured version Visualization version GIF version | ||
| Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| Ref | Expression |
|---|---|
| exidres.1 | ⊢ 𝑋 = ran 𝐺 |
| exidres.2 | ⊢ 𝑈 = (GId‘𝐺) |
| exidres.3 | ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) |
| Ref | Expression |
|---|---|
| exidres | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 2 | exidres.2 | . . . 4 ⊢ 𝑈 = (GId‘𝐺) | |
| 3 | exidres.3 | . . . 4 ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) | |
| 4 | 1, 2, 3 | exidreslem 37906 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
| 5 | oveq1 7417 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥)) | |
| 6 | 5 | eqeq1d 2738 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥)) |
| 7 | 6 | ovanraleqv 7434 | . . . 4 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
| 8 | 7 | rspcev 3606 | . . 3 ⊢ ((𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)) → ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 10 | resexg 6019 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V) | |
| 11 | 3, 10 | eqeltrid 2839 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V) |
| 12 | eqid 2736 | . . . . 5 ⊢ dom dom 𝐻 = dom dom 𝐻 | |
| 13 | 12 | isexid 37876 | . . . 4 ⊢ (𝐻 ∈ V → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
| 14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
| 15 | 14 | 3ad2ant1 1133 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
| 16 | 9, 15 | mpbird 257 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 × cxp 5657 dom cdm 5659 ran crn 5660 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 GIdcgi 30476 ExId cexid 37873 Magmacmagm 37877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-riota 7367 df-ov 7413 df-gid 30480 df-exid 37874 df-mgmOLD 37878 |
| This theorem is referenced by: exidresid 37908 |
| Copyright terms: Public domain | W3C validator |