![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exidres | Structured version Visualization version GIF version |
Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
Ref | Expression |
---|---|
exidres.1 | ⊢ 𝑋 = ran 𝐺 |
exidres.2 | ⊢ 𝑈 = (GId‘𝐺) |
exidres.3 | ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) |
Ref | Expression |
---|---|
exidres | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exidres.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | exidres.2 | . . . 4 ⊢ 𝑈 = (GId‘𝐺) | |
3 | exidres.3 | . . . 4 ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) | |
4 | 1, 2, 3 | exidreslem 36386 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
5 | oveq1 7368 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥)) | |
6 | 5 | eqeq1d 2735 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥)) |
7 | 6 | ovanraleqv 7385 | . . . 4 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
8 | 7 | rspcev 3583 | . . 3 ⊢ ((𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)) → ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
10 | resexg 5987 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V) | |
11 | 3, 10 | eqeltrid 2838 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V) |
12 | eqid 2733 | . . . . 5 ⊢ dom dom 𝐻 = dom dom 𝐻 | |
13 | 12 | isexid 36356 | . . . 4 ⊢ (𝐻 ∈ V → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
15 | 14 | 3ad2ant1 1134 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
16 | 9, 15 | mpbird 257 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 × cxp 5635 dom cdm 5637 ran crn 5638 ↾ cres 5639 ‘cfv 6500 (class class class)co 7361 GIdcgi 29481 ExId cexid 36353 Magmacmagm 36357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-fo 6506 df-fv 6508 df-riota 7317 df-ov 7364 df-gid 29485 df-exid 36354 df-mgmOLD 36358 |
This theorem is referenced by: exidresid 36388 |
Copyright terms: Public domain | W3C validator |