Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opidonOLD Structured version   Visualization version   GIF version

Theorem opidonOLD 35937
Description: Obsolete version of mndpfo 18323 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
opidonOLD.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
opidonOLD (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)

Proof of Theorem opidonOLD
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4159 . . . 4 (Magma ∩ ExId ) ⊆ Magma
21sseli 3913 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma)
3 opidonOLD.1 . . . . 5 𝑋 = dom dom 𝐺
43ismgmOLD 35935 . . . 4 (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
54ibi 266 . . 3 (𝐺 ∈ Magma → 𝐺:(𝑋 × 𝑋)⟶𝑋)
62, 5syl 17 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)⟶𝑋)
7 inss2 4160 . . . . 5 (Magma ∩ ExId ) ⊆ ExId
87sseli 3913 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ ExId )
93isexid 35932 . . . . 5 (𝐺 ∈ ExId → (𝐺 ∈ ExId ↔ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
109biimpd 228 . . . 4 (𝐺 ∈ ExId → (𝐺 ∈ ExId → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
118, 8, 10sylc 65 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
12 simpl 482 . . . . . . . 8 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
1312ralimi 3086 . . . . . . 7 (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
14 oveq2 7263 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑢𝐺𝑥) = (𝑢𝐺𝑦))
15 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
1614, 15eqeq12d 2754 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑦))
1716rspcv 3547 . . . . . . . 8 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝐺𝑦) = 𝑦))
18 eqcom 2745 . . . . . . . . . . 11 (𝑦 = (𝑢𝐺𝑥) ↔ (𝑢𝐺𝑥) = 𝑦)
1914eqeq1d 2740 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑦 ↔ (𝑢𝐺𝑦) = 𝑦))
2018, 19syl5bb 282 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑦 = (𝑢𝐺𝑥) ↔ (𝑢𝐺𝑦) = 𝑦))
2120rspcev 3552 . . . . . . . . 9 ((𝑦𝑋 ∧ (𝑢𝐺𝑦) = 𝑦) → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
2221ex 412 . . . . . . . 8 (𝑦𝑋 → ((𝑢𝐺𝑦) = 𝑦 → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2317, 22syld 47 . . . . . . 7 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2413, 23syl5 34 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2524reximdv 3201 . . . . 5 (𝑦𝑋 → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2625impcom 407 . . . 4 ((∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ 𝑦𝑋) → ∃𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
2726ralrimiva 3107 . . 3 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑦𝑋𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
2811, 27syl 17 . 2 (𝐺 ∈ (Magma ∩ ExId ) → ∀𝑦𝑋𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
29 foov 7424 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑦𝑋𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
306, 28, 29sylanbrc 582 1 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882   × cxp 5578  dom cdm 5580  wf 6414  ontowfo 6416  (class class class)co 7255   ExId cexid 35929  Magmacmagm 35933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-exid 35930  df-mgmOLD 35934
This theorem is referenced by:  rngopidOLD  35938  opidon2OLD  35939
  Copyright terms: Public domain W3C validator