Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opidonOLD Structured version   Visualization version   GIF version

Theorem opidonOLD 37853
Description: Obsolete version of mndpfo 18691 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
opidonOLD.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
opidonOLD (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)

Proof of Theorem opidonOLD
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4203 . . . 4 (Magma ∩ ExId ) ⊆ Magma
21sseli 3945 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma)
3 opidonOLD.1 . . . . 5 𝑋 = dom dom 𝐺
43ismgmOLD 37851 . . . 4 (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
54ibi 267 . . 3 (𝐺 ∈ Magma → 𝐺:(𝑋 × 𝑋)⟶𝑋)
62, 5syl 17 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)⟶𝑋)
7 inss2 4204 . . . . 5 (Magma ∩ ExId ) ⊆ ExId
87sseli 3945 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ ExId )
93isexid 37848 . . . . 5 (𝐺 ∈ ExId → (𝐺 ∈ ExId ↔ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
109biimpd 229 . . . 4 (𝐺 ∈ ExId → (𝐺 ∈ ExId → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
118, 8, 10sylc 65 . . 3 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
12 simpl 482 . . . . . . . 8 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
1312ralimi 3067 . . . . . . 7 (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
14 oveq2 7398 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑢𝐺𝑥) = (𝑢𝐺𝑦))
15 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
1614, 15eqeq12d 2746 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑦))
1716rspcv 3587 . . . . . . . 8 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝐺𝑦) = 𝑦))
18 eqcom 2737 . . . . . . . . . . 11 (𝑦 = (𝑢𝐺𝑥) ↔ (𝑢𝐺𝑥) = 𝑦)
1914eqeq1d 2732 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑦 ↔ (𝑢𝐺𝑦) = 𝑦))
2018, 19bitrid 283 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑦 = (𝑢𝐺𝑥) ↔ (𝑢𝐺𝑦) = 𝑦))
2120rspcev 3591 . . . . . . . . 9 ((𝑦𝑋 ∧ (𝑢𝐺𝑦) = 𝑦) → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
2221ex 412 . . . . . . . 8 (𝑦𝑋 → ((𝑢𝐺𝑦) = 𝑦 → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2317, 22syld 47 . . . . . . 7 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2413, 23syl5 34 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2524reximdv 3149 . . . . 5 (𝑦𝑋 → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
2625impcom 407 . . . 4 ((∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ 𝑦𝑋) → ∃𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
2726ralrimiva 3126 . . 3 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑦𝑋𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
2811, 27syl 17 . 2 (𝐺 ∈ (Magma ∩ ExId ) → ∀𝑦𝑋𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥))
29 foov 7566 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑦𝑋𝑢𝑋𝑥𝑋 𝑦 = (𝑢𝐺𝑥)))
306, 28, 29sylanbrc 583 1 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916   × cxp 5639  dom cdm 5641  wf 6510  ontowfo 6512  (class class class)co 7390   ExId cexid 37845  Magmacmagm 37849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-exid 37846  df-mgmOLD 37850
This theorem is referenced by:  rngopidOLD  37854  opidon2OLD  37855
  Copyright terms: Public domain W3C validator