Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isexid2 Structured version   Visualization version   GIF version

Theorem isexid2 37398
Description: If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isexid2 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem isexid2
StepHypRef Expression
1 isexid2.1 . 2 𝑋 = ran 𝐺
2 rngopidOLD 37396 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
3 elin 3961 . . . . . . 7 (𝐺 ∈ (Magma ∩ ExId ) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ))
4 eqid 2725 . . . . . . . . . . 11 dom dom 𝐺 = dom dom 𝐺
54isexid 37390 . . . . . . . . . 10 (𝐺 ∈ ExId → (𝐺 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
65ibi 266 . . . . . . . . 9 (𝐺 ∈ ExId → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
76a1d 25 . . . . . . . 8 (𝐺 ∈ ExId → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
87adantl 480 . . . . . . 7 ((𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
93, 8sylbi 216 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
10 eqeq2 2737 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (𝑋 = ran 𝐺𝑋 = dom dom 𝐺))
11 raleq 3312 . . . . . . . 8 (ran 𝐺 = dom dom 𝐺 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1211rexeqbi1dv 3324 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1310, 12imbi12d 343 . . . . . 6 (ran 𝐺 = dom dom 𝐺 → ((𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ↔ (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
149, 13imbitrrid 245 . . . . 5 (ran 𝐺 = dom dom 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
152, 14mpcom 38 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1615com12 32 . . 3 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
17 raleq 3312 . . . 4 (𝑋 = ran 𝐺 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1817rexeqbi1dv 3324 . . 3 (𝑋 = ran 𝐺 → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1916, 18sylibrd 258 . 2 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
201, 19ax-mp 5 1 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060  cin 3944  dom cdm 5677  ran crn 5678  (class class class)co 7417   ExId cexid 37387  Magmacmagm 37391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-fo 6553  df-fv 6555  df-ov 7420  df-exid 37388  df-mgmOLD 37392
This theorem is referenced by:  exidu1  37399
  Copyright terms: Public domain W3C validator