Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isexid2 Structured version   Visualization version   GIF version

Theorem isexid2 37846
Description: If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isexid2 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem isexid2
StepHypRef Expression
1 isexid2.1 . 2 𝑋 = ran 𝐺
2 rngopidOLD 37844 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
3 elin 3938 . . . . . . 7 (𝐺 ∈ (Magma ∩ ExId ) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ))
4 eqid 2730 . . . . . . . . . . 11 dom dom 𝐺 = dom dom 𝐺
54isexid 37838 . . . . . . . . . 10 (𝐺 ∈ ExId → (𝐺 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
65ibi 267 . . . . . . . . 9 (𝐺 ∈ ExId → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
76a1d 25 . . . . . . . 8 (𝐺 ∈ ExId → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
87adantl 481 . . . . . . 7 ((𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
93, 8sylbi 217 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
10 eqeq2 2742 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (𝑋 = ran 𝐺𝑋 = dom dom 𝐺))
11 raleq 3299 . . . . . . . 8 (ran 𝐺 = dom dom 𝐺 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1211rexeqbi1dv 3315 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1310, 12imbi12d 344 . . . . . 6 (ran 𝐺 = dom dom 𝐺 → ((𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ↔ (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
149, 13imbitrrid 246 . . . . 5 (ran 𝐺 = dom dom 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
152, 14mpcom 38 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1615com12 32 . . 3 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
17 raleq 3299 . . . 4 (𝑋 = ran 𝐺 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1817rexeqbi1dv 3315 . . 3 (𝑋 = ran 𝐺 → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1916, 18sylibrd 259 . 2 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
201, 19ax-mp 5 1 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  wrex 3055  cin 3921  dom cdm 5646  ran crn 5647  (class class class)co 7394   ExId cexid 37835  Magmacmagm 37839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fo 6525  df-fv 6527  df-ov 7397  df-exid 37836  df-mgmOLD 37840
This theorem is referenced by:  exidu1  37847
  Copyright terms: Public domain W3C validator