Proof of Theorem isexid2
Step | Hyp | Ref
| Expression |
1 | | isexid2.1 |
. 2
⊢ 𝑋 = ran 𝐺 |
2 | | rngopidOLD 35938 |
. . . . 5
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ ran 𝐺 = dom dom
𝐺) |
3 | | elin 3899 |
. . . . . . 7
⊢ (𝐺 ∈ (Magma ∩ ExId )
↔ (𝐺 ∈ Magma
∧ 𝐺 ∈ ExId
)) |
4 | | eqid 2738 |
. . . . . . . . . . 11
⊢ dom dom
𝐺 = dom dom 𝐺 |
5 | 4 | isexid 35932 |
. . . . . . . . . 10
⊢ (𝐺 ∈ ExId → (𝐺 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐺∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
6 | 5 | ibi 266 |
. . . . . . . . 9
⊢ (𝐺 ∈ ExId → ∃𝑢 ∈ dom dom 𝐺∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) |
7 | 6 | a1d 25 |
. . . . . . . 8
⊢ (𝐺 ∈ ExId → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
8 | 7 | adantl 481 |
. . . . . . 7
⊢ ((𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
9 | 3, 8 | sylbi 216 |
. . . . . 6
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
10 | | eqeq2 2750 |
. . . . . . 7
⊢ (ran
𝐺 = dom dom 𝐺 → (𝑋 = ran 𝐺 ↔ 𝑋 = dom dom 𝐺)) |
11 | | raleq 3333 |
. . . . . . . 8
⊢ (ran
𝐺 = dom dom 𝐺 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
12 | 11 | rexeqbi1dv 3332 |
. . . . . . 7
⊢ (ran
𝐺 = dom dom 𝐺 → (∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ dom dom 𝐺∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
13 | 10, 12 | imbi12d 344 |
. . . . . 6
⊢ (ran
𝐺 = dom dom 𝐺 → ((𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ↔ (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))) |
14 | 9, 13 | syl5ibr 245 |
. . . . 5
⊢ (ran
𝐺 = dom dom 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))) |
15 | 2, 14 | mpcom 38 |
. . . 4
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
16 | 15 | com12 32 |
. . 3
⊢ (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) →
∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
17 | | raleq 3333 |
. . . 4
⊢ (𝑋 = ran 𝐺 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
18 | 17 | rexeqbi1dv 3332 |
. . 3
⊢ (𝑋 = ran 𝐺 → (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
19 | 16, 18 | sylibrd 258 |
. 2
⊢ (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) →
∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
20 | 1, 19 | ax-mp 5 |
1
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ ∃𝑢 ∈
𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) |