Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isexid2 Structured version   Visualization version   GIF version

Theorem isexid2 37844
Description: If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isexid2 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem isexid2
StepHypRef Expression
1 isexid2.1 . 2 𝑋 = ran 𝐺
2 rngopidOLD 37842 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
3 elin 3932 . . . . . . 7 (𝐺 ∈ (Magma ∩ ExId ) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ))
4 eqid 2730 . . . . . . . . . . 11 dom dom 𝐺 = dom dom 𝐺
54isexid 37836 . . . . . . . . . 10 (𝐺 ∈ ExId → (𝐺 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
65ibi 267 . . . . . . . . 9 (𝐺 ∈ ExId → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
76a1d 25 . . . . . . . 8 (𝐺 ∈ ExId → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
87adantl 481 . . . . . . 7 ((𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
93, 8sylbi 217 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
10 eqeq2 2742 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (𝑋 = ran 𝐺𝑋 = dom dom 𝐺))
11 raleq 3298 . . . . . . . 8 (ran 𝐺 = dom dom 𝐺 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1211rexeqbi1dv 3314 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1310, 12imbi12d 344 . . . . . 6 (ran 𝐺 = dom dom 𝐺 → ((𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ↔ (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
149, 13imbitrrid 246 . . . . 5 (ran 𝐺 = dom dom 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
152, 14mpcom 38 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1615com12 32 . . 3 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
17 raleq 3298 . . . 4 (𝑋 = ran 𝐺 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1817rexeqbi1dv 3314 . . 3 (𝑋 = ran 𝐺 → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1916, 18sylibrd 259 . 2 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
201, 19ax-mp 5 1 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3915  dom cdm 5640  ran crn 5641  (class class class)co 7389   ExId cexid 37833  Magmacmagm 37837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fo 6519  df-fv 6521  df-ov 7392  df-exid 37834  df-mgmOLD 37838
This theorem is referenced by:  exidu1  37845
  Copyright terms: Public domain W3C validator