Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isexid2 Structured version   Visualization version   GIF version

Theorem isexid2 35238
Description: If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isexid2 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem isexid2
StepHypRef Expression
1 isexid2.1 . 2 𝑋 = ran 𝐺
2 rngopidOLD 35236 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
3 elin 3935 . . . . . . 7 (𝐺 ∈ (Magma ∩ ExId ) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ))
4 eqid 2824 . . . . . . . . . . 11 dom dom 𝐺 = dom dom 𝐺
54isexid 35230 . . . . . . . . . 10 (𝐺 ∈ ExId → (𝐺 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
65ibi 270 . . . . . . . . 9 (𝐺 ∈ ExId → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
76a1d 25 . . . . . . . 8 (𝐺 ∈ ExId → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
87adantl 485 . . . . . . 7 ((𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
93, 8sylbi 220 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
10 eqeq2 2836 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (𝑋 = ran 𝐺𝑋 = dom dom 𝐺))
11 raleq 3396 . . . . . . . 8 (ran 𝐺 = dom dom 𝐺 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1211rexeqbi1dv 3395 . . . . . . 7 (ran 𝐺 = dom dom 𝐺 → (∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1310, 12imbi12d 348 . . . . . 6 (ran 𝐺 = dom dom 𝐺 → ((𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ↔ (𝑋 = dom dom 𝐺 → ∃𝑢 ∈ dom dom 𝐺𝑥 ∈ dom dom 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
149, 13syl5ibr 249 . . . . 5 (ran 𝐺 = dom dom 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))))
152, 14mpcom 38 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (𝑋 = ran 𝐺 → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1615com12 32 . . 3 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
17 raleq 3396 . . . 4 (𝑋 = ran 𝐺 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1817rexeqbi1dv 3395 . . 3 (𝑋 = ran 𝐺 → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
1916, 18sylibrd 262 . 2 (𝑋 = ran 𝐺 → (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
201, 19ax-mp 5 1 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  wrex 3134  cin 3918  dom cdm 5542  ran crn 5543  (class class class)co 7149   ExId cexid 35227  Magmacmagm 35231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fo 6349  df-fv 6351  df-ov 7152  df-exid 35228  df-mgmOLD 35232
This theorem is referenced by:  exidu1  35239
  Copyright terms: Public domain W3C validator