MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islat Structured version   Visualization version   GIF version

Theorem islat 18396
Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
islat.b 𝐡 = (Baseβ€˜πΎ)
islat.j ∨ = (joinβ€˜πΎ)
islat.m ∧ = (meetβ€˜πΎ)
Assertion
Ref Expression
islat (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐡 Γ— 𝐡) ∧ dom ∧ = (𝐡 Γ— 𝐡))))

Proof of Theorem islat
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . 6 (𝑙 = 𝐾 β†’ (joinβ€˜π‘™) = (joinβ€˜πΎ))
2 islat.j . . . . . 6 ∨ = (joinβ€˜πΎ)
31, 2eqtr4di 2789 . . . . 5 (𝑙 = 𝐾 β†’ (joinβ€˜π‘™) = ∨ )
43dmeqd 5905 . . . 4 (𝑙 = 𝐾 β†’ dom (joinβ€˜π‘™) = dom ∨ )
5 fveq2 6891 . . . . . 6 (𝑙 = 𝐾 β†’ (Baseβ€˜π‘™) = (Baseβ€˜πΎ))
6 islat.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
75, 6eqtr4di 2789 . . . . 5 (𝑙 = 𝐾 β†’ (Baseβ€˜π‘™) = 𝐡)
87sqxpeqd 5708 . . . 4 (𝑙 = 𝐾 β†’ ((Baseβ€˜π‘™) Γ— (Baseβ€˜π‘™)) = (𝐡 Γ— 𝐡))
94, 8eqeq12d 2747 . . 3 (𝑙 = 𝐾 β†’ (dom (joinβ€˜π‘™) = ((Baseβ€˜π‘™) Γ— (Baseβ€˜π‘™)) ↔ dom ∨ = (𝐡 Γ— 𝐡)))
10 fveq2 6891 . . . . . 6 (𝑙 = 𝐾 β†’ (meetβ€˜π‘™) = (meetβ€˜πΎ))
11 islat.m . . . . . 6 ∧ = (meetβ€˜πΎ)
1210, 11eqtr4di 2789 . . . . 5 (𝑙 = 𝐾 β†’ (meetβ€˜π‘™) = ∧ )
1312dmeqd 5905 . . . 4 (𝑙 = 𝐾 β†’ dom (meetβ€˜π‘™) = dom ∧ )
1413, 8eqeq12d 2747 . . 3 (𝑙 = 𝐾 β†’ (dom (meetβ€˜π‘™) = ((Baseβ€˜π‘™) Γ— (Baseβ€˜π‘™)) ↔ dom ∧ = (𝐡 Γ— 𝐡)))
159, 14anbi12d 630 . 2 (𝑙 = 𝐾 β†’ ((dom (joinβ€˜π‘™) = ((Baseβ€˜π‘™) Γ— (Baseβ€˜π‘™)) ∧ dom (meetβ€˜π‘™) = ((Baseβ€˜π‘™) Γ— (Baseβ€˜π‘™))) ↔ (dom ∨ = (𝐡 Γ— 𝐡) ∧ dom ∧ = (𝐡 Γ— 𝐡))))
16 df-lat 18395 . 2 Lat = {𝑙 ∈ Poset ∣ (dom (joinβ€˜π‘™) = ((Baseβ€˜π‘™) Γ— (Baseβ€˜π‘™)) ∧ dom (meetβ€˜π‘™) = ((Baseβ€˜π‘™) Γ— (Baseβ€˜π‘™)))}
1715, 16elrab2 3686 1 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐡 Γ— 𝐡) ∧ dom ∧ = (𝐡 Γ— 𝐡))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105   Γ— cxp 5674  dom cdm 5676  β€˜cfv 6543  Basecbs 17151  Posetcpo 18270  joincjn 18274  meetcmee 18275  Latclat 18394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-dm 5686  df-iota 6495  df-fv 6551  df-lat 18395
This theorem is referenced by:  odulatb  18397  latcl2  18399  latlem  18400  latpos  18401  latjcom  18410  latmcom  18426  clatl  18471  toslat  47769
  Copyright terms: Public domain W3C validator