| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| islat.b | ⊢ 𝐵 = (Base‘𝐾) |
| islat.j | ⊢ ∨ = (join‘𝐾) |
| islat.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| islat | ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = (join‘𝐾)) | |
| 2 | islat.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 3 | 1, 2 | eqtr4di 2788 | . . . . 5 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = ∨ ) |
| 4 | 3 | dmeqd 5885 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (join‘𝑙) = dom ∨ ) |
| 5 | fveq2 6876 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
| 6 | islat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 5, 6 | eqtr4di 2788 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
| 8 | 7 | sqxpeqd 5686 | . . . 4 ⊢ (𝑙 = 𝐾 → ((Base‘𝑙) × (Base‘𝑙)) = (𝐵 × 𝐵)) |
| 9 | 4, 8 | eqeq12d 2751 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∨ = (𝐵 × 𝐵))) |
| 10 | fveq2 6876 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = (meet‘𝐾)) | |
| 11 | islat.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 12 | 10, 11 | eqtr4di 2788 | . . . . 5 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = ∧ ) |
| 13 | 12 | dmeqd 5885 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (meet‘𝑙) = dom ∧ ) |
| 14 | 13, 8 | eqeq12d 2751 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∧ = (𝐵 × 𝐵))) |
| 15 | 9, 14 | anbi12d 632 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙))) ↔ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
| 16 | df-lat 18442 | . 2 ⊢ Lat = {𝑙 ∈ Poset ∣ (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)))} | |
| 17 | 15, 16 | elrab2 3674 | 1 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 × cxp 5652 dom cdm 5654 ‘cfv 6531 Basecbs 17228 Posetcpo 18319 joincjn 18323 meetcmee 18324 Latclat 18441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 df-iota 6484 df-fv 6539 df-lat 18442 |
| This theorem is referenced by: odulatb 18444 latcl2 18446 latlem 18447 latpos 18448 latjcom 18457 latmcom 18473 clatl 18518 toslat 48956 |
| Copyright terms: Public domain | W3C validator |