![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islat | Structured version Visualization version GIF version |
Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
islat.b | ⊢ 𝐵 = (Base‘𝐾) |
islat.j | ⊢ ∨ = (join‘𝐾) |
islat.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
islat | ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = (join‘𝐾)) | |
2 | islat.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | eqtr4di 2798 | . . . . 5 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = ∨ ) |
4 | 3 | dmeqd 5930 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (join‘𝑙) = dom ∨ ) |
5 | fveq2 6920 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
6 | islat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
8 | 7 | sqxpeqd 5732 | . . . 4 ⊢ (𝑙 = 𝐾 → ((Base‘𝑙) × (Base‘𝑙)) = (𝐵 × 𝐵)) |
9 | 4, 8 | eqeq12d 2756 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∨ = (𝐵 × 𝐵))) |
10 | fveq2 6920 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = (meet‘𝐾)) | |
11 | islat.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
12 | 10, 11 | eqtr4di 2798 | . . . . 5 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = ∧ ) |
13 | 12 | dmeqd 5930 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (meet‘𝑙) = dom ∧ ) |
14 | 13, 8 | eqeq12d 2756 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∧ = (𝐵 × 𝐵))) |
15 | 9, 14 | anbi12d 631 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙))) ↔ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
16 | df-lat 18502 | . 2 ⊢ Lat = {𝑙 ∈ Poset ∣ (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)))} | |
17 | 15, 16 | elrab2 3711 | 1 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 × cxp 5698 dom cdm 5700 ‘cfv 6573 Basecbs 17258 Posetcpo 18377 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-lat 18502 |
This theorem is referenced by: odulatb 18504 latcl2 18506 latlem 18507 latpos 18508 latjcom 18517 latmcom 18533 clatl 18578 toslat 48654 |
Copyright terms: Public domain | W3C validator |