MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islat Structured version   Visualization version   GIF version

Theorem islat 18503
Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
islat.b 𝐵 = (Base‘𝐾)
islat.j = (join‘𝐾)
islat.m = (meet‘𝐾)
Assertion
Ref Expression
islat (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))

Proof of Theorem islat
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . . 6 (𝑙 = 𝐾 → (join‘𝑙) = (join‘𝐾))
2 islat.j . . . . . 6 = (join‘𝐾)
31, 2eqtr4di 2798 . . . . 5 (𝑙 = 𝐾 → (join‘𝑙) = )
43dmeqd 5930 . . . 4 (𝑙 = 𝐾 → dom (join‘𝑙) = dom )
5 fveq2 6920 . . . . . 6 (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾))
6 islat.b . . . . . 6 𝐵 = (Base‘𝐾)
75, 6eqtr4di 2798 . . . . 5 (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵)
87sqxpeqd 5732 . . . 4 (𝑙 = 𝐾 → ((Base‘𝑙) × (Base‘𝑙)) = (𝐵 × 𝐵))
94, 8eqeq12d 2756 . . 3 (𝑙 = 𝐾 → (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom = (𝐵 × 𝐵)))
10 fveq2 6920 . . . . . 6 (𝑙 = 𝐾 → (meet‘𝑙) = (meet‘𝐾))
11 islat.m . . . . . 6 = (meet‘𝐾)
1210, 11eqtr4di 2798 . . . . 5 (𝑙 = 𝐾 → (meet‘𝑙) = )
1312dmeqd 5930 . . . 4 (𝑙 = 𝐾 → dom (meet‘𝑙) = dom )
1413, 8eqeq12d 2756 . . 3 (𝑙 = 𝐾 → (dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom = (𝐵 × 𝐵)))
159, 14anbi12d 631 . 2 (𝑙 = 𝐾 → ((dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙))) ↔ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
16 df-lat 18502 . 2 Lat = {𝑙 ∈ Poset ∣ (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)))}
1715, 16elrab2 3711 1 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108   × cxp 5698  dom cdm 5700  cfv 6573  Basecbs 17258  Posetcpo 18377  joincjn 18381  meetcmee 18382  Latclat 18501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710  df-iota 6525  df-fv 6581  df-lat 18502
This theorem is referenced by:  odulatb  18504  latcl2  18506  latlem  18507  latpos  18508  latjcom  18517  latmcom  18533  clatl  18578  toslat  48654
  Copyright terms: Public domain W3C validator