Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islat | Structured version Visualization version GIF version |
Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
islat.b | ⊢ 𝐵 = (Base‘𝐾) |
islat.j | ⊢ ∨ = (join‘𝐾) |
islat.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
islat | ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = (join‘𝐾)) | |
2 | islat.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | eqtr4di 2797 | . . . . 5 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = ∨ ) |
4 | 3 | dmeqd 5803 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (join‘𝑙) = dom ∨ ) |
5 | fveq2 6756 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
6 | islat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 5, 6 | eqtr4di 2797 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
8 | 7 | sqxpeqd 5612 | . . . 4 ⊢ (𝑙 = 𝐾 → ((Base‘𝑙) × (Base‘𝑙)) = (𝐵 × 𝐵)) |
9 | 4, 8 | eqeq12d 2754 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∨ = (𝐵 × 𝐵))) |
10 | fveq2 6756 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = (meet‘𝐾)) | |
11 | islat.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
12 | 10, 11 | eqtr4di 2797 | . . . . 5 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = ∧ ) |
13 | 12 | dmeqd 5803 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (meet‘𝑙) = dom ∧ ) |
14 | 13, 8 | eqeq12d 2754 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∧ = (𝐵 × 𝐵))) |
15 | 9, 14 | anbi12d 630 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙))) ↔ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
16 | df-lat 18065 | . 2 ⊢ Lat = {𝑙 ∈ Poset ∣ (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)))} | |
17 | 15, 16 | elrab2 3620 | 1 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 × cxp 5578 dom cdm 5580 ‘cfv 6418 Basecbs 16840 Posetcpo 17940 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-lat 18065 |
This theorem is referenced by: odulatb 18067 latcl2 18069 latlem 18070 latpos 18071 latjcom 18080 latmcom 18096 clatl 18141 toslat 46156 |
Copyright terms: Public domain | W3C validator |