| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| islat.b | ⊢ 𝐵 = (Base‘𝐾) |
| islat.j | ⊢ ∨ = (join‘𝐾) |
| islat.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| islat | ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = (join‘𝐾)) | |
| 2 | islat.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 3 | 1, 2 | eqtr4di 2784 | . . . . 5 ⊢ (𝑙 = 𝐾 → (join‘𝑙) = ∨ ) |
| 4 | 3 | dmeqd 5845 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (join‘𝑙) = dom ∨ ) |
| 5 | fveq2 6822 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = (Base‘𝐾)) | |
| 6 | islat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 5, 6 | eqtr4di 2784 | . . . . 5 ⊢ (𝑙 = 𝐾 → (Base‘𝑙) = 𝐵) |
| 8 | 7 | sqxpeqd 5648 | . . . 4 ⊢ (𝑙 = 𝐾 → ((Base‘𝑙) × (Base‘𝑙)) = (𝐵 × 𝐵)) |
| 9 | 4, 8 | eqeq12d 2747 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∨ = (𝐵 × 𝐵))) |
| 10 | fveq2 6822 | . . . . . 6 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = (meet‘𝐾)) | |
| 11 | islat.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 12 | 10, 11 | eqtr4di 2784 | . . . . 5 ⊢ (𝑙 = 𝐾 → (meet‘𝑙) = ∧ ) |
| 13 | 12 | dmeqd 5845 | . . . 4 ⊢ (𝑙 = 𝐾 → dom (meet‘𝑙) = dom ∧ ) |
| 14 | 13, 8 | eqeq12d 2747 | . . 3 ⊢ (𝑙 = 𝐾 → (dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ↔ dom ∧ = (𝐵 × 𝐵))) |
| 15 | 9, 14 | anbi12d 632 | . 2 ⊢ (𝑙 = 𝐾 → ((dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙))) ↔ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
| 16 | df-lat 18335 | . 2 ⊢ Lat = {𝑙 ∈ Poset ∣ (dom (join‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)) ∧ dom (meet‘𝑙) = ((Base‘𝑙) × (Base‘𝑙)))} | |
| 17 | 15, 16 | elrab2 3650 | 1 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5614 dom cdm 5616 ‘cfv 6481 Basecbs 17117 Posetcpo 18210 joincjn 18214 meetcmee 18215 Latclat 18334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-dm 5626 df-iota 6437 df-fv 6489 df-lat 18335 |
| This theorem is referenced by: odulatb 18337 latcl2 18339 latlem 18340 latpos 18341 latjcom 18350 latmcom 18366 clatl 18411 toslat 49012 |
| Copyright terms: Public domain | W3C validator |