![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latcl2 | Structured version Visualization version GIF version |
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
latcl2.b | ⊢ 𝐵 = (Base‘𝐾) |
latcl2.j | ⊢ ∨ = (join‘𝐾) |
latcl2.m | ⊢ ∧ = (meet‘𝐾) |
latcl2.k | ⊢ (𝜑 → 𝐾 ∈ Lat) |
latcl2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
latcl2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
latcl2 | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latcl2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | latcl2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | 1, 2 | opelxpd 5728 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
4 | latcl2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
5 | latcl2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latcl2.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
7 | latcl2.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
8 | 5, 6, 7 | islat 18491 | . . . . 5 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
9 | 4, 8 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
10 | 9 | simprld 772 | . . 3 ⊢ (𝜑 → dom ∨ = (𝐵 × 𝐵)) |
11 | 3, 10 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
12 | 9 | simprrd 774 | . . 3 ⊢ (𝜑 → dom ∧ = (𝐵 × 𝐵)) |
13 | 3, 12 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
14 | 11, 13 | jca 511 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 〈cop 4637 × cxp 5687 dom cdm 5689 ‘cfv 6563 Basecbs 17245 Posetcpo 18365 joincjn 18369 meetcmee 18370 Latclat 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-iota 6516 df-fv 6571 df-lat 18490 |
This theorem is referenced by: latlej1 18506 latlej2 18507 latjle12 18508 latmle1 18522 latmle2 18523 latlem12 18524 |
Copyright terms: Public domain | W3C validator |