Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latcl2 | Structured version Visualization version GIF version |
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
latcl2.b | ⊢ 𝐵 = (Base‘𝐾) |
latcl2.j | ⊢ ∨ = (join‘𝐾) |
latcl2.m | ⊢ ∧ = (meet‘𝐾) |
latcl2.k | ⊢ (𝜑 → 𝐾 ∈ Lat) |
latcl2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
latcl2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
latcl2 | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latcl2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | latcl2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | 1, 2 | opelxpd 5627 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
4 | latcl2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
5 | latcl2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latcl2.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
7 | latcl2.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
8 | 5, 6, 7 | islat 18151 | . . . . 5 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
9 | 4, 8 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
10 | 9 | simprld 769 | . . 3 ⊢ (𝜑 → dom ∨ = (𝐵 × 𝐵)) |
11 | 3, 10 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
12 | 9 | simprrd 771 | . . 3 ⊢ (𝜑 → dom ∧ = (𝐵 × 𝐵)) |
13 | 3, 12 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
14 | 11, 13 | jca 512 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 dom cdm 5589 ‘cfv 6433 Basecbs 16912 Posetcpo 18025 joincjn 18029 meetcmee 18030 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 df-iota 6391 df-fv 6441 df-lat 18150 |
This theorem is referenced by: latlej1 18166 latlej2 18167 latjle12 18168 latmle1 18182 latmle2 18183 latlem12 18184 |
Copyright terms: Public domain | W3C validator |