MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latcl2 Structured version   Visualization version   GIF version

Theorem latcl2 18154
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
latcl2.b 𝐵 = (Base‘𝐾)
latcl2.j = (join‘𝐾)
latcl2.m = (meet‘𝐾)
latcl2.k (𝜑𝐾 ∈ Lat)
latcl2.x (𝜑𝑋𝐵)
latcl2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
latcl2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))

Proof of Theorem latcl2
StepHypRef Expression
1 latcl2.x . . . 4 (𝜑𝑋𝐵)
2 latcl2.y . . . 4 (𝜑𝑌𝐵)
31, 2opelxpd 5627 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
4 latcl2.k . . . . 5 (𝜑𝐾 ∈ Lat)
5 latcl2.b . . . . . 6 𝐵 = (Base‘𝐾)
6 latcl2.j . . . . . 6 = (join‘𝐾)
7 latcl2.m . . . . . 6 = (meet‘𝐾)
85, 6, 7islat 18151 . . . . 5 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
94, 8sylib 217 . . . 4 (𝜑 → (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
109simprld 769 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
113, 10eleqtrrd 2842 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
129simprrd 771 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
133, 12eleqtrrd 2842 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
1411, 13jca 512 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567   × cxp 5587  dom cdm 5589  cfv 6433  Basecbs 16912  Posetcpo 18025  joincjn 18029  meetcmee 18030  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-dm 5599  df-iota 6391  df-fv 6441  df-lat 18150
This theorem is referenced by:  latlej1  18166  latlej2  18167  latjle12  18168  latmle1  18182  latmle2  18183  latlem12  18184
  Copyright terms: Public domain W3C validator