![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latcl2 | Structured version Visualization version GIF version |
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
latcl2.b | ⊢ 𝐵 = (Base‘𝐾) |
latcl2.j | ⊢ ∨ = (join‘𝐾) |
latcl2.m | ⊢ ∧ = (meet‘𝐾) |
latcl2.k | ⊢ (𝜑 → 𝐾 ∈ Lat) |
latcl2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
latcl2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
latcl2 | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latcl2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | latcl2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | 1, 2 | opelxpd 5739 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
4 | latcl2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
5 | latcl2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latcl2.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
7 | latcl2.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
8 | 5, 6, 7 | islat 18503 | . . . . 5 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
9 | 4, 8 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
10 | 9 | simprld 771 | . . 3 ⊢ (𝜑 → dom ∨ = (𝐵 × 𝐵)) |
11 | 3, 10 | eleqtrrd 2847 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
12 | 9 | simprrd 773 | . . 3 ⊢ (𝜑 → dom ∧ = (𝐵 × 𝐵)) |
13 | 3, 12 | eleqtrrd 2847 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
14 | 11, 13 | jca 511 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 dom cdm 5700 ‘cfv 6573 Basecbs 17258 Posetcpo 18377 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-lat 18502 |
This theorem is referenced by: latlej1 18518 latlej2 18519 latjle12 18520 latmle1 18534 latmle2 18535 latlem12 18536 |
Copyright terms: Public domain | W3C validator |