MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latcl2 Structured version   Visualization version   GIF version

Theorem latcl2 17657
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
latcl2.b 𝐵 = (Base‘𝐾)
latcl2.j = (join‘𝐾)
latcl2.m = (meet‘𝐾)
latcl2.k (𝜑𝐾 ∈ Lat)
latcl2.x (𝜑𝑋𝐵)
latcl2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
latcl2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))

Proof of Theorem latcl2
StepHypRef Expression
1 latcl2.x . . . 4 (𝜑𝑋𝐵)
2 latcl2.y . . . 4 (𝜑𝑌𝐵)
31, 2opelxpd 5592 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
4 latcl2.k . . . . 5 (𝜑𝐾 ∈ Lat)
5 latcl2.b . . . . . 6 𝐵 = (Base‘𝐾)
6 latcl2.j . . . . . 6 = (join‘𝐾)
7 latcl2.m . . . . . 6 = (meet‘𝐾)
85, 6, 7islat 17656 . . . . 5 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
94, 8sylib 220 . . . 4 (𝜑 → (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
109simprld 770 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
113, 10eleqtrrd 2916 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
129simprrd 772 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
133, 12eleqtrrd 2916 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
1411, 13jca 514 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cop 4572   × cxp 5552  dom cdm 5554  cfv 6354  Basecbs 16482  Posetcpo 17549  joincjn 17553  meetcmee 17554  Latclat 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-xp 5560  df-dm 5564  df-iota 6313  df-fv 6362  df-lat 17655
This theorem is referenced by:  latlej1  17669  latlej2  17670  latjle12  17671  latmle1  17685  latmle2  17686  latlem12  17687
  Copyright terms: Public domain W3C validator