![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latcl2 | Structured version Visualization version GIF version |
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
latcl2.b | β’ π΅ = (BaseβπΎ) |
latcl2.j | β’ β¨ = (joinβπΎ) |
latcl2.m | β’ β§ = (meetβπΎ) |
latcl2.k | β’ (π β πΎ β Lat) |
latcl2.x | β’ (π β π β π΅) |
latcl2.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
latcl2 | β’ (π β (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β§ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latcl2.x | . . . 4 β’ (π β π β π΅) | |
2 | latcl2.y | . . . 4 β’ (π β π β π΅) | |
3 | 1, 2 | opelxpd 5708 | . . 3 β’ (π β β¨π, πβ© β (π΅ Γ π΅)) |
4 | latcl2.k | . . . . 5 β’ (π β πΎ β Lat) | |
5 | latcl2.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
6 | latcl2.j | . . . . . 6 β’ β¨ = (joinβπΎ) | |
7 | latcl2.m | . . . . . 6 β’ β§ = (meetβπΎ) | |
8 | 5, 6, 7 | islat 18396 | . . . . 5 β’ (πΎ β Lat β (πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom β§ = (π΅ Γ π΅)))) |
9 | 4, 8 | sylib 217 | . . . 4 β’ (π β (πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom β§ = (π΅ Γ π΅)))) |
10 | 9 | simprld 769 | . . 3 β’ (π β dom β¨ = (π΅ Γ π΅)) |
11 | 3, 10 | eleqtrrd 2830 | . 2 β’ (π β β¨π, πβ© β dom β¨ ) |
12 | 9 | simprrd 771 | . . 3 β’ (π β dom β§ = (π΅ Γ π΅)) |
13 | 3, 12 | eleqtrrd 2830 | . 2 β’ (π β β¨π, πβ© β dom β§ ) |
14 | 11, 13 | jca 511 | 1 β’ (π β (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β§ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β¨cop 4629 Γ cxp 5667 dom cdm 5669 βcfv 6536 Basecbs 17151 Posetcpo 18270 joincjn 18274 meetcmee 18275 Latclat 18394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-dm 5679 df-iota 6488 df-fv 6544 df-lat 18395 |
This theorem is referenced by: latlej1 18411 latlej2 18412 latjle12 18413 latmle1 18427 latmle2 18428 latlem12 18429 |
Copyright terms: Public domain | W3C validator |