MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latcl2 Structured version   Visualization version   GIF version

Theorem latcl2 17942
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
latcl2.b 𝐵 = (Base‘𝐾)
latcl2.j = (join‘𝐾)
latcl2.m = (meet‘𝐾)
latcl2.k (𝜑𝐾 ∈ Lat)
latcl2.x (𝜑𝑋𝐵)
latcl2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
latcl2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))

Proof of Theorem latcl2
StepHypRef Expression
1 latcl2.x . . . 4 (𝜑𝑋𝐵)
2 latcl2.y . . . 4 (𝜑𝑌𝐵)
31, 2opelxpd 5589 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
4 latcl2.k . . . . 5 (𝜑𝐾 ∈ Lat)
5 latcl2.b . . . . . 6 𝐵 = (Base‘𝐾)
6 latcl2.j . . . . . 6 = (join‘𝐾)
7 latcl2.m . . . . . 6 = (meet‘𝐾)
85, 6, 7islat 17939 . . . . 5 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
94, 8sylib 221 . . . 4 (𝜑 → (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
109simprld 772 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
113, 10eleqtrrd 2841 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
129simprrd 774 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
133, 12eleqtrrd 2841 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
1411, 13jca 515 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cop 4547   × cxp 5549  dom cdm 5551  cfv 6380  Basecbs 16760  Posetcpo 17814  joincjn 17818  meetcmee 17819  Latclat 17937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-xp 5557  df-dm 5561  df-iota 6338  df-fv 6388  df-lat 17938
This theorem is referenced by:  latlej1  17954  latlej2  17955  latjle12  17956  latmle1  17970  latmle2  17971  latlem12  17972
  Copyright terms: Public domain W3C validator