![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latcl2 | Structured version Visualization version GIF version |
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
latcl2.b | β’ π΅ = (BaseβπΎ) |
latcl2.j | β’ β¨ = (joinβπΎ) |
latcl2.m | β’ β§ = (meetβπΎ) |
latcl2.k | β’ (π β πΎ β Lat) |
latcl2.x | β’ (π β π β π΅) |
latcl2.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
latcl2 | β’ (π β (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β§ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latcl2.x | . . . 4 β’ (π β π β π΅) | |
2 | latcl2.y | . . . 4 β’ (π β π β π΅) | |
3 | 1, 2 | opelxpd 5715 | . . 3 β’ (π β β¨π, πβ© β (π΅ Γ π΅)) |
4 | latcl2.k | . . . . 5 β’ (π β πΎ β Lat) | |
5 | latcl2.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
6 | latcl2.j | . . . . . 6 β’ β¨ = (joinβπΎ) | |
7 | latcl2.m | . . . . . 6 β’ β§ = (meetβπΎ) | |
8 | 5, 6, 7 | islat 18385 | . . . . 5 β’ (πΎ β Lat β (πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom β§ = (π΅ Γ π΅)))) |
9 | 4, 8 | sylib 217 | . . . 4 β’ (π β (πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom β§ = (π΅ Γ π΅)))) |
10 | 9 | simprld 770 | . . 3 β’ (π β dom β¨ = (π΅ Γ π΅)) |
11 | 3, 10 | eleqtrrd 2836 | . 2 β’ (π β β¨π, πβ© β dom β¨ ) |
12 | 9 | simprrd 772 | . . 3 β’ (π β dom β§ = (π΅ Γ π΅)) |
13 | 3, 12 | eleqtrrd 2836 | . 2 β’ (π β β¨π, πβ© β dom β§ ) |
14 | 11, 13 | jca 512 | 1 β’ (π β (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β§ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¨cop 4634 Γ cxp 5674 dom cdm 5676 βcfv 6543 Basecbs 17143 Posetcpo 18259 joincjn 18263 meetcmee 18264 Latclat 18383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-dm 5686 df-iota 6495 df-fv 6551 df-lat 18384 |
This theorem is referenced by: latlej1 18400 latlej2 18401 latjle12 18402 latmle1 18416 latmle2 18417 latlem12 18418 |
Copyright terms: Public domain | W3C validator |