|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > odulatb | Structured version Visualization version GIF version | ||
| Description: Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| odulat.d | ⊢ 𝐷 = (ODual‘𝑂) | 
| Ref | Expression | 
|---|---|
| odulatb | ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Lat ↔ 𝐷 ∈ Lat)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | odulat.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
| 2 | 1 | oduposb 18375 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) | 
| 3 | ancom 460 | . . . 4 ⊢ ((dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))) ↔ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)))) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ((dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))) ↔ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))))) | 
| 5 | 2, 4 | anbi12d 632 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 ∈ Poset ∧ (dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)))) ↔ (𝐷 ∈ Poset ∧ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)))))) | 
| 6 | eqid 2736 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 7 | eqid 2736 | . . 3 ⊢ (join‘𝑂) = (join‘𝑂) | |
| 8 | eqid 2736 | . . 3 ⊢ (meet‘𝑂) = (meet‘𝑂) | |
| 9 | 6, 7, 8 | islat 18479 | . 2 ⊢ (𝑂 ∈ Lat ↔ (𝑂 ∈ Poset ∧ (dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))))) | 
| 10 | 1, 6 | odubas 18337 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝐷) | 
| 11 | 1, 8 | odujoin 18454 | . . 3 ⊢ (meet‘𝑂) = (join‘𝐷) | 
| 12 | 1, 7 | odumeet 18456 | . . 3 ⊢ (join‘𝑂) = (meet‘𝐷) | 
| 13 | 10, 11, 12 | islat 18479 | . 2 ⊢ (𝐷 ∈ Lat ↔ (𝐷 ∈ Poset ∧ (dom (meet‘𝑂) = ((Base‘𝑂) × (Base‘𝑂)) ∧ dom (join‘𝑂) = ((Base‘𝑂) × (Base‘𝑂))))) | 
| 14 | 5, 9, 13 | 3bitr4g 314 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Lat ↔ 𝐷 ∈ Lat)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 × cxp 5682 dom cdm 5684 ‘cfv 6560 Basecbs 17248 ODualcodu 18332 Posetcpo 18354 joincjn 18358 meetcmee 18359 Latclat 18477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-dec 12736 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ple 17318 df-odu 18333 df-proset 18341 df-poset 18360 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-lat 18478 | 
| This theorem is referenced by: odulat 18481 odudlatb 18571 | 
| Copyright terms: Public domain | W3C validator |