Step | Hyp | Ref
| Expression |
1 | | tospos 18138 |
. 2
⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) |
2 | 1 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝐾 ∈ Poset) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | simplrl 774 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑥 ∈ (Base‘𝐾)) |
5 | | simplrr 775 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑦 ∈ (Base‘𝐾)) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
7 | | simpr 485 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑥(le‘𝐾)𝑦) |
8 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} = {𝑥, 𝑦}) |
9 | | eqid 2738 |
. . . . . . 7
⊢
(lub‘𝐾) =
(lub‘𝐾) |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | lubprdm 46257 |
. . . . . 6
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) |
11 | 1 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝐾 ∈ Poset) |
12 | | simplrr 775 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑦 ∈ (Base‘𝐾)) |
13 | | simplrl 774 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 ∈ (Base‘𝐾)) |
14 | | simpr 485 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑦(le‘𝐾)𝑥) |
15 | | prcom 4668 |
. . . . . . . 8
⊢ {𝑥, 𝑦} = {𝑦, 𝑥} |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} = {𝑦, 𝑥}) |
17 | 11, 3, 12, 13, 6, 14, 16, 9 | lubprdm 46257 |
. . . . . 6
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) |
18 | 3, 6 | tleile 18139 |
. . . . . . 7
⊢ ((𝐾 ∈ Toset ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑦 ∨ 𝑦(le‘𝐾)𝑥)) |
19 | 18 | 3expb 1119 |
. . . . . 6
⊢ ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ∨ 𝑦(le‘𝐾)𝑥)) |
20 | 10, 17, 19 | mpjaodan 956 |
. . . . 5
⊢ ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) |
21 | 20 | ralrimivva 3123 |
. . . 4
⊢ (𝐾 ∈ Toset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (lub‘𝐾)) |
22 | | eqid 2738 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
23 | 3, 1, 9, 22 | joindm2 46262 |
. . . 4
⊢ (𝐾 ∈ Toset → (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ↔
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
24 | 21, 23 | mpbird 256 |
. . 3
⊢ (𝐾 ∈ Toset → dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(glb‘𝐾) =
(glb‘𝐾) |
26 | 2, 3, 4, 5, 6, 7, 8, 25 | glbprdm 46260 |
. . . . . 6
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)) |
27 | 11, 3, 12, 13, 6, 14, 16, 25 | glbprdm 46260 |
. . . . . 6
⊢ (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)) |
28 | 26, 27, 19 | mpjaodan 956 |
. . . . 5
⊢ ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)) |
29 | 28 | ralrimivva 3123 |
. . . 4
⊢ (𝐾 ∈ Toset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (glb‘𝐾)) |
30 | | eqid 2738 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
31 | 3, 1, 25, 30 | meetdm2 46264 |
. . . 4
⊢ (𝐾 ∈ Toset → (dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ↔
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
32 | 29, 31 | mpbird 256 |
. . 3
⊢ (𝐾 ∈ Toset → dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))) |
33 | 24, 32 | jca 512 |
. 2
⊢ (𝐾 ∈ Toset → (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)))) |
34 | 3, 22, 30 | islat 18151 |
. 2
⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom
(join‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾)) ∧ dom
(meet‘𝐾) =
((Base‘𝐾) ×
(Base‘𝐾))))) |
35 | 1, 33, 34 | sylanbrc 583 |
1
⊢ (𝐾 ∈ Toset → 𝐾 ∈ Lat) |