Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslat Structured version   Visualization version   GIF version

Theorem toslat 48654
Description: A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024.)
Assertion
Ref Expression
toslat (𝐾 ∈ Toset → 𝐾 ∈ Lat)

Proof of Theorem toslat
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tospos 18490 . 2 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
21ad2antrr 725 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝐾 ∈ Poset)
3 eqid 2740 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 simplrl 776 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑥 ∈ (Base‘𝐾))
5 simplrr 777 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑦 ∈ (Base‘𝐾))
6 eqid 2740 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
7 simpr 484 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑥(le‘𝐾)𝑦)
8 eqidd 2741 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} = {𝑥, 𝑦})
9 eqid 2740 . . . . . . 7 (lub‘𝐾) = (lub‘𝐾)
102, 3, 4, 5, 6, 7, 8, 9lubprdm 48643 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))
111ad2antrr 725 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝐾 ∈ Poset)
12 simplrr 777 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑦 ∈ (Base‘𝐾))
13 simplrl 776 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 ∈ (Base‘𝐾))
14 simpr 484 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑦(le‘𝐾)𝑥)
15 prcom 4757 . . . . . . . 8 {𝑥, 𝑦} = {𝑦, 𝑥}
1615a1i 11 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} = {𝑦, 𝑥})
1711, 3, 12, 13, 6, 14, 16, 9lubprdm 48643 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))
183, 6tleile 18491 . . . . . . 7 ((𝐾 ∈ Toset ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥))
19183expb 1120 . . . . . 6 ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥))
2010, 17, 19mpjaodan 959 . . . . 5 ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))
2120ralrimivva 3208 . . . 4 (𝐾 ∈ Toset → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (lub‘𝐾))
22 eqid 2740 . . . . 5 (join‘𝐾) = (join‘𝐾)
233, 1, 9, 22joindm2 48648 . . . 4 (𝐾 ∈ Toset → (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (lub‘𝐾)))
2421, 23mpbird 257 . . 3 (𝐾 ∈ Toset → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
25 eqid 2740 . . . . . . 7 (glb‘𝐾) = (glb‘𝐾)
262, 3, 4, 5, 6, 7, 8, 25glbprdm 48646 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
2711, 3, 12, 13, 6, 14, 16, 25glbprdm 48646 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
2826, 27, 19mpjaodan 959 . . . . 5 ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
2928ralrimivva 3208 . . . 4 (𝐾 ∈ Toset → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (glb‘𝐾))
30 eqid 2740 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
313, 1, 25, 30meetdm2 48650 . . . 4 (𝐾 ∈ Toset → (dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3229, 31mpbird 257 . . 3 (𝐾 ∈ Toset → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
3324, 32jca 511 . 2 (𝐾 ∈ Toset → (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
343, 22, 30islat 18503 . 2 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
351, 33, 34sylanbrc 582 1 (𝐾 ∈ Toset → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  {cpr 4650   class class class wbr 5166   × cxp 5698  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  lubclub 18379  glbcglb 18380  joincjn 18381  meetcmee 18382  Tosetctos 18486  Latclat 18501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ple 17331  df-odu 18357  df-proset 18365  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-toset 18487  df-lat 18502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator