Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslat Structured version   Visualization version   GIF version

Theorem toslat 48956
Description: A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024.)
Assertion
Ref Expression
toslat (𝐾 ∈ Toset → 𝐾 ∈ Lat)

Proof of Theorem toslat
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tospos 18430 . 2 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
21ad2antrr 726 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝐾 ∈ Poset)
3 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 simplrl 776 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑥 ∈ (Base‘𝐾))
5 simplrr 777 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑦 ∈ (Base‘𝐾))
6 eqid 2735 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
7 simpr 484 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → 𝑥(le‘𝐾)𝑦)
8 eqidd 2736 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} = {𝑥, 𝑦})
9 eqid 2735 . . . . . . 7 (lub‘𝐾) = (lub‘𝐾)
102, 3, 4, 5, 6, 7, 8, 9lubprdm 48937 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))
111ad2antrr 726 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝐾 ∈ Poset)
12 simplrr 777 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑦 ∈ (Base‘𝐾))
13 simplrl 776 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 ∈ (Base‘𝐾))
14 simpr 484 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → 𝑦(le‘𝐾)𝑥)
15 prcom 4708 . . . . . . . 8 {𝑥, 𝑦} = {𝑦, 𝑥}
1615a1i 11 . . . . . . 7 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} = {𝑦, 𝑥})
1711, 3, 12, 13, 6, 14, 16, 9lubprdm 48937 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))
183, 6tleile 18431 . . . . . . 7 ((𝐾 ∈ Toset ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥))
19183expb 1120 . . . . . 6 ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥))
2010, 17, 19mpjaodan 960 . . . . 5 ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))
2120ralrimivva 3187 . . . 4 (𝐾 ∈ Toset → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (lub‘𝐾))
22 eqid 2735 . . . . 5 (join‘𝐾) = (join‘𝐾)
233, 1, 9, 22joindm2 48942 . . . 4 (𝐾 ∈ Toset → (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (lub‘𝐾)))
2421, 23mpbird 257 . . 3 (𝐾 ∈ Toset → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
25 eqid 2735 . . . . . . 7 (glb‘𝐾) = (glb‘𝐾)
262, 3, 4, 5, 6, 7, 8, 25glbprdm 48940 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥(le‘𝐾)𝑦) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
2711, 3, 12, 13, 6, 14, 16, 25glbprdm 48940 . . . . . 6 (((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑦(le‘𝐾)𝑥) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
2826, 27, 19mpjaodan 960 . . . . 5 ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
2928ralrimivva 3187 . . . 4 (𝐾 ∈ Toset → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (glb‘𝐾))
30 eqid 2735 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
313, 1, 25, 30meetdm2 48944 . . . 4 (𝐾 ∈ Toset → (dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾){𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3229, 31mpbird 257 . . 3 (𝐾 ∈ Toset → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
3324, 32jca 511 . 2 (𝐾 ∈ Toset → (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
343, 22, 30islat 18443 . 2 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
351, 33, 34sylanbrc 583 1 (𝐾 ∈ Toset → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  {cpr 4603   class class class wbr 5119   × cxp 5652  dom cdm 5654  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  lubclub 18321  glbcglb 18322  joincjn 18323  meetcmee 18324  Tosetctos 18426  Latclat 18441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-dec 12709  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ple 17291  df-odu 18299  df-proset 18306  df-poset 18325  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-toset 18427  df-lat 18442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator