![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latlem | Structured version Visualization version GIF version |
Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
latlem.b | ⊢ 𝐵 = (Base‘𝐾) |
latlem.j | ⊢ ∨ = (join‘𝐾) |
latlem.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latlem | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
6 | opelxpi 5737 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
7 | 6 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
8 | latlem.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
9 | 1, 2, 8 | islat 18503 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
10 | simprl 770 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∨ = (𝐵 × 𝐵)) | |
11 | 9, 10 | sylbi 217 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∨ = (𝐵 × 𝐵)) |
12 | 11 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∨ = (𝐵 × 𝐵)) |
13 | 7, 12 | eleqtrrd 2847 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
14 | 1, 2, 3, 4, 5, 13 | joincl 18448 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
15 | simprr 772 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∧ = (𝐵 × 𝐵)) | |
16 | 9, 15 | sylbi 217 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∧ = (𝐵 × 𝐵)) |
17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∧ = (𝐵 × 𝐵)) |
18 | 7, 17 | eleqtrrd 2847 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
19 | 1, 8, 3, 4, 5, 18 | meetcl 18462 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
20 | 14, 19 | jca 511 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Posetcpo 18377 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 |
This theorem is referenced by: latjcl 18509 latmcl 18510 |
Copyright terms: Public domain | W3C validator |