Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  latlem Structured version   Visualization version   GIF version

Theorem latlem 17725
 Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
latlem.b 𝐵 = (Base‘𝐾)
latlem.j = (join‘𝐾)
latlem.m = (meet‘𝐾)
Assertion
Ref Expression
latlem ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵))

Proof of Theorem latlem
StepHypRef Expression
1 latlem.b . . 3 𝐵 = (Base‘𝐾)
2 latlem.j . . 3 = (join‘𝐾)
3 simp1 1133 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
4 simp2 1134 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 simp3 1135 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
6 opelxpi 5561 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
763adant1 1127 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
8 latlem.m . . . . . . 7 = (meet‘𝐾)
91, 2, 8islat 17723 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
10 simprl 770 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
119, 10sylbi 220 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
12113ad2ant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
137, 12eleqtrrd 2855 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
141, 2, 3, 4, 5, 13joincl 17682 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
15 simprr 772 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
169, 15sylbi 220 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
17163ad2ant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
187, 17eleqtrrd 2855 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
191, 8, 3, 4, 5, 18meetcl 17696 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2014, 19jca 515 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ⟨cop 4528   × cxp 5522  dom cdm 5524  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  Posetcpo 17616  joincjn 17620  meetcmee 17621  Latclat 17721 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-lat 17722 This theorem is referenced by:  latjcl  17727  latmcl  17728
 Copyright terms: Public domain W3C validator