MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latlem Structured version   Visualization version   GIF version

Theorem latlem 18155
Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
latlem.b 𝐵 = (Base‘𝐾)
latlem.j = (join‘𝐾)
latlem.m = (meet‘𝐾)
Assertion
Ref Expression
latlem ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵))

Proof of Theorem latlem
StepHypRef Expression
1 latlem.b . . 3 𝐵 = (Base‘𝐾)
2 latlem.j . . 3 = (join‘𝐾)
3 simp1 1135 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
4 simp2 1136 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 simp3 1137 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
6 opelxpi 5626 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
763adant1 1129 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
8 latlem.m . . . . . . 7 = (meet‘𝐾)
91, 2, 8islat 18151 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
10 simprl 768 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
119, 10sylbi 216 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
12113ad2ant1 1132 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
137, 12eleqtrrd 2842 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
141, 2, 3, 4, 5, 13joincl 18096 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
15 simprr 770 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
169, 15sylbi 216 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
17163ad2ant1 1132 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
187, 17eleqtrrd 2842 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
191, 8, 3, 4, 5, 18meetcl 18110 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2014, 19jca 512 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cop 4567   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275  Basecbs 16912  Posetcpo 18025  joincjn 18029  meetcmee 18030  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150
This theorem is referenced by:  latjcl  18157  latmcl  18158
  Copyright terms: Public domain W3C validator