Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latlem | Structured version Visualization version GIF version |
Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
latlem.b | ⊢ 𝐵 = (Base‘𝐾) |
latlem.j | ⊢ ∨ = (join‘𝐾) |
latlem.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latlem | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | simp1 1133 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | simp2 1134 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | simp3 1135 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
6 | opelxpi 5561 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
7 | 6 | 3adant1 1127 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
8 | latlem.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
9 | 1, 2, 8 | islat 17723 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
10 | simprl 770 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∨ = (𝐵 × 𝐵)) | |
11 | 9, 10 | sylbi 220 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∨ = (𝐵 × 𝐵)) |
12 | 11 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∨ = (𝐵 × 𝐵)) |
13 | 7, 12 | eleqtrrd 2855 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
14 | 1, 2, 3, 4, 5, 13 | joincl 17682 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
15 | simprr 772 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∧ = (𝐵 × 𝐵)) | |
16 | 9, 15 | sylbi 220 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∧ = (𝐵 × 𝐵)) |
17 | 16 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∧ = (𝐵 × 𝐵)) |
18 | 7, 17 | eleqtrrd 2855 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
19 | 1, 8, 3, 4, 5, 18 | meetcl 17696 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
20 | 14, 19 | jca 515 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 〈cop 4528 × cxp 5522 dom cdm 5524 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 Posetcpo 17616 joincjn 17620 meetcmee 17621 Latclat 17721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-lat 17722 |
This theorem is referenced by: latjcl 17727 latmcl 17728 |
Copyright terms: Public domain | W3C validator |