| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latpos | Structured version Visualization version GIF version | ||
| Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latpos | ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | islat 18339 | . 2 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5617 dom cdm 5619 ‘cfv 6482 Basecbs 17120 Posetcpo 18213 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-dm 5629 df-iota 6438 df-fv 6490 df-lat 18338 |
| This theorem is referenced by: latref 18347 latasymb 18348 lattr 18350 latjcom 18353 latjle12 18356 latleeqj1 18357 latmcom 18369 latlem12 18372 latleeqm1 18373 atlpos 39280 cvlposN 39306 hlpos 39345 |
| Copyright terms: Public domain | W3C validator |