Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latpos | Structured version Visualization version GIF version |
Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latpos | ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | islat 18066 | . 2 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 × cxp 5578 dom cdm 5580 ‘cfv 6418 Basecbs 16840 Posetcpo 17940 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-lat 18065 |
This theorem is referenced by: latref 18074 latasymb 18075 lattr 18077 latjcom 18080 latjle12 18083 latleeqj1 18084 latmcom 18096 latlem12 18099 latleeqm1 18100 atlpos 37242 cvlposN 37268 hlpos 37307 |
Copyright terms: Public domain | W3C validator |