MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latpos Structured version   Visualization version   GIF version

Theorem latpos 18484
Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.)
Assertion
Ref Expression
latpos (𝐾 ∈ Lat → 𝐾 ∈ Poset)

Proof of Theorem latpos
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2736 . . 3 (join‘𝐾) = (join‘𝐾)
3 eqid 2736 . . 3 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3islat 18479 . 2 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
54simplbi 497 1 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107   × cxp 5682  dom cdm 5684  cfv 6560  Basecbs 17248  Posetcpo 18354  joincjn 18358  meetcmee 18359  Latclat 18477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-dm 5694  df-iota 6513  df-fv 6568  df-lat 18478
This theorem is referenced by:  latref  18487  latasymb  18488  lattr  18490  latjcom  18493  latjle12  18496  latleeqj1  18497  latmcom  18509  latlem12  18512  latleeqm1  18513  atlpos  39303  cvlposN  39329  hlpos  39368
  Copyright terms: Public domain W3C validator