MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latpos Structured version   Visualization version   GIF version

Theorem latpos 18403
Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.)
Assertion
Ref Expression
latpos (𝐾 ∈ Lat → 𝐾 ∈ Poset)

Proof of Theorem latpos
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2730 . . 3 (join‘𝐾) = (join‘𝐾)
3 eqid 2730 . . 3 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3islat 18398 . 2 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
54simplbi 497 1 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5638  dom cdm 5640  cfv 6513  Basecbs 17185  Posetcpo 18274  joincjn 18278  meetcmee 18279  Latclat 18396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-dm 5650  df-iota 6466  df-fv 6521  df-lat 18397
This theorem is referenced by:  latref  18406  latasymb  18407  lattr  18409  latjcom  18412  latjle12  18415  latleeqj1  18416  latmcom  18428  latlem12  18431  latleeqm1  18432  atlpos  39289  cvlposN  39315  hlpos  39354
  Copyright terms: Public domain W3C validator