![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latpos | Structured version Visualization version GIF version |
Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latpos | ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2735 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2735 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | islat 18491 | . 2 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 × cxp 5687 dom cdm 5689 ‘cfv 6563 Basecbs 17245 Posetcpo 18365 joincjn 18369 meetcmee 18370 Latclat 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-iota 6516 df-fv 6571 df-lat 18490 |
This theorem is referenced by: latref 18499 latasymb 18500 lattr 18502 latjcom 18505 latjle12 18508 latleeqj1 18509 latmcom 18521 latlem12 18524 latleeqm1 18525 atlpos 39283 cvlposN 39309 hlpos 39348 |
Copyright terms: Public domain | W3C validator |