Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latpos | Structured version Visualization version GIF version |
Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latpos | ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2737 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2737 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | islat 17939 | . 2 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))) |
5 | 4 | simplbi 501 | 1 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 × cxp 5549 dom cdm 5551 ‘cfv 6380 Basecbs 16760 Posetcpo 17814 joincjn 17818 meetcmee 17819 Latclat 17937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-dm 5561 df-iota 6338 df-fv 6388 df-lat 17938 |
This theorem is referenced by: latref 17947 latasymb 17948 lattr 17950 latjcom 17953 latjle12 17956 latleeqj1 17957 latmcom 17969 latlem12 17972 latleeqm1 17973 atlpos 37052 cvlposN 37078 hlpos 37117 |
Copyright terms: Public domain | W3C validator |