| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latpos | Structured version Visualization version GIF version | ||
| Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latpos | ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | islat 18392 | . 2 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5636 dom cdm 5638 ‘cfv 6511 Basecbs 17179 Posetcpo 18268 joincjn 18272 meetcmee 18273 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-lat 18391 |
| This theorem is referenced by: latref 18400 latasymb 18401 lattr 18403 latjcom 18406 latjle12 18409 latleeqj1 18410 latmcom 18422 latlem12 18425 latleeqm1 18426 atlpos 39294 cvlposN 39320 hlpos 39359 |
| Copyright terms: Public domain | W3C validator |