| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latpos | Structured version Visualization version GIF version | ||
| Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latpos | ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2736 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | eqid 2736 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | islat 18479 | . 2 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 × cxp 5682 dom cdm 5684 ‘cfv 6560 Basecbs 17248 Posetcpo 18354 joincjn 18358 meetcmee 18359 Latclat 18477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-dm 5694 df-iota 6513 df-fv 6568 df-lat 18478 |
| This theorem is referenced by: latref 18487 latasymb 18488 lattr 18490 latjcom 18493 latjle12 18496 latleeqj1 18497 latmcom 18509 latlem12 18512 latleeqm1 18513 atlpos 39303 cvlposN 39329 hlpos 39368 |
| Copyright terms: Public domain | W3C validator |