Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngsqr Structured version   Visualization version   GIF version

Theorem orngsqr 30251
Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0 𝐵 = (Base‘𝑅)
orngmul.1 = (le‘𝑅)
orngmul.2 0 = (0g𝑅)
orngmul.3 · = (.r𝑅)
Assertion
Ref Expression
orngsqr ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0 (𝑋 · 𝑋))

Proof of Theorem orngsqr
StepHypRef Expression
1 simpll 783 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑅 ∈ oRing)
2 simplr 785 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑋𝐵)
3 simpr 477 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 𝑋)
4 orngmul.0 . . . 4 𝐵 = (Base‘𝑅)
5 orngmul.1 . . . 4 = (le‘𝑅)
6 orngmul.2 . . . 4 0 = (0g𝑅)
7 orngmul.3 . . . 4 · = (.r𝑅)
84, 5, 6, 7orngmul 30250 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑋𝐵0 𝑋)) → 0 (𝑋 · 𝑋))
91, 2, 3, 2, 3, 8syl122anc 1498 . 2 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 (𝑋 · 𝑋))
10 simpll 783 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ oRing)
11 orngring 30247 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
1211ad2antrr 717 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Ring)
13 ringgrp 18819 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1412, 13syl 17 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Grp)
15 simplr 785 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑋𝐵)
16 eqid 2765 . . . . . 6 (invg𝑅) = (invg𝑅)
174, 16grpinvcl 17734 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑅)‘𝑋) ∈ 𝐵)
1814, 15, 17syl2anc 579 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ((invg𝑅)‘𝑋) ∈ 𝐵)
19 orngogrp 30248 . . . . . . . 8 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
20 isogrp 30149 . . . . . . . . 9 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
2120simprbi 490 . . . . . . . 8 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
2219, 21syl 17 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ oMnd)
2310, 22syl 17 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ oMnd)
244, 6grpidcl 17717 . . . . . . 7 (𝑅 ∈ Grp → 0𝐵)
2514, 24syl 17 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0𝐵)
26 simpl 474 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 𝑅 ∈ oRing)
2711, 13, 243syl 18 . . . . . . . . . . . 12 (𝑅 ∈ oRing → 0𝐵)
2826, 27syl 17 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0𝐵)
29 simpr 477 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 𝑋𝐵)
3026, 28, 293jca 1158 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → (𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵))
31 eqid 2765 . . . . . . . . . . . 12 (lt‘𝑅) = (lt‘𝑅)
325, 31pltle 17227 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) → ( 0 (lt‘𝑅)𝑋0 𝑋))
3332con3dimp 397 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) ∧ ¬ 0 𝑋) → ¬ 0 (lt‘𝑅)𝑋)
3430, 33sylan 575 . . . . . . . . 9 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ¬ 0 (lt‘𝑅)𝑋)
35 omndtos 30152 . . . . . . . . . . . . 13 (𝑅 ∈ oMnd → 𝑅 ∈ Toset)
3622, 35syl 17 . . . . . . . . . . . 12 (𝑅 ∈ oRing → 𝑅 ∈ Toset)
374, 5, 31tosso 17302 . . . . . . . . . . . . . 14 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ((lt‘𝑅) Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
3837ibi 258 . . . . . . . . . . . . 13 (𝑅 ∈ Toset → ((lt‘𝑅) Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ))
3938simpld 488 . . . . . . . . . . . 12 (𝑅 ∈ Toset → (lt‘𝑅) Or 𝐵)
4010, 36, 393syl 18 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (lt‘𝑅) Or 𝐵)
41 solin 5221 . . . . . . . . . . 11 (((lt‘𝑅) Or 𝐵 ∧ ( 0𝐵𝑋𝐵)) → ( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ))
4240, 25, 15, 41syl12anc 865 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ))
43 3orass 1110 . . . . . . . . . 10 (( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ ( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
4442, 43sylib 209 . . . . . . . . 9 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
45 orel1 912 . . . . . . . . 9 0 (lt‘𝑅)𝑋 → (( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )) → ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
4634, 44, 45sylc 65 . . . . . . . 8 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 = 𝑋𝑋(lt‘𝑅) 0 ))
47 orcom 896 . . . . . . . . 9 (( 0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ (𝑋(lt‘𝑅) 00 = 𝑋))
48 eqcom 2772 . . . . . . . . . 10 ( 0 = 𝑋𝑋 = 0 )
4948orbi2i 936 . . . . . . . . 9 ((𝑋(lt‘𝑅) 00 = 𝑋) ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 ))
5047, 49bitri 266 . . . . . . . 8 (( 0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 ))
5146, 50sylib 209 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(lt‘𝑅) 0𝑋 = 0 ))
52 tospos 30105 . . . . . . . . 9 (𝑅 ∈ Toset → 𝑅 ∈ Poset)
5310, 36, 523syl 18 . . . . . . . 8 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Poset)
544, 5, 31pleval2 17231 . . . . . . . 8 ((𝑅 ∈ Poset ∧ 𝑋𝐵0𝐵) → (𝑋 0 ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 )))
5553, 15, 25, 54syl3anc 1490 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋 0 ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 )))
5651, 55mpbird 248 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑋 0 )
57 eqid 2765 . . . . . . 7 (+g𝑅) = (+g𝑅)
584, 5, 57omndadd 30153 . . . . . 6 ((𝑅 ∈ oMnd ∧ (𝑋𝐵0𝐵 ∧ ((invg𝑅)‘𝑋) ∈ 𝐵) ∧ 𝑋 0 ) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) ( 0 (+g𝑅)((invg𝑅)‘𝑋)))
5923, 15, 25, 18, 56, 58syl131anc 1502 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) ( 0 (+g𝑅)((invg𝑅)‘𝑋)))
604, 57, 6, 16grprinv 17736 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) = 0 )
6114, 15, 60syl2anc 579 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) = 0 )
624, 57, 6grplid 17719 . . . . . 6 ((𝑅 ∈ Grp ∧ ((invg𝑅)‘𝑋) ∈ 𝐵) → ( 0 (+g𝑅)((invg𝑅)‘𝑋)) = ((invg𝑅)‘𝑋))
6314, 18, 62syl2anc 579 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (+g𝑅)((invg𝑅)‘𝑋)) = ((invg𝑅)‘𝑋))
6459, 61, 633brtr3d 4840 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 ((invg𝑅)‘𝑋))
654, 5, 6, 7orngmul 30250 . . . 4 ((𝑅 ∈ oRing ∧ (((invg𝑅)‘𝑋) ∈ 𝐵0 ((invg𝑅)‘𝑋)) ∧ (((invg𝑅)‘𝑋) ∈ 𝐵0 ((invg𝑅)‘𝑋))) → 0 (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)))
6610, 18, 64, 18, 64, 65syl122anc 1498 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)))
674, 7, 16, 12, 15, 15ringm2neg 18865 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)) = (𝑋 · 𝑋))
6866, 67breqtrd 4835 . 2 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 (𝑋 · 𝑋))
699, 68pm2.61dan 847 1 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0 (𝑋 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  wss 3732   class class class wbr 4809   I cid 5184   Or wor 5197  cres 5279  cfv 6068  (class class class)co 6842  Basecbs 16130  +gcplusg 16214  .rcmulr 16215  lecple 16221  0gc0g 16366  Posetcpo 17206  ltcplt 17207  Tosetctos 17299  Grpcgrp 17689  invgcminusg 17690  Ringcrg 18814  oMndcomnd 30144  oGrpcogrp 30145  oRingcorng 30242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-plusg 16227  df-0g 16368  df-proset 17194  df-poset 17212  df-plt 17224  df-toset 17300  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-minusg 17693  df-mgp 18757  df-ur 18769  df-ring 18816  df-omnd 30146  df-ogrp 30147  df-orng 30244
This theorem is referenced by:  orng0le1  30259
  Copyright terms: Public domain W3C validator