| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orngrmulle | Structured version Visualization version GIF version | ||
| Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
| ornglmullt.t | ⊢ · = (.r‘𝑅) |
| ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
| ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
| ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| orngmulle.l | ⊢ ≤ = (le‘𝑅) |
| orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| orngrmulle | ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
| 2 | orngogrp 20766 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
| 4 | isogrp 20021 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
| 7 | orngring 20765 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | ringgrp 20141 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 13 | 11, 12 | grpidcl 18862 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 15 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 16 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 18 | 11, 17 | ringcl 20153 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 · 𝑍) ∈ 𝐵) |
| 19 | 8, 15, 16, 18 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑍) ∈ 𝐵) |
| 20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | 11, 17 | ringcl 20153 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 22 | 8, 20, 16, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
| 23 | eqid 2729 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 24 | 11, 23 | grpsubcl 18917 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵) |
| 25 | 10, 19, 22, 24 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵) |
| 26 | 11, 23 | grpsubcl 18917 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 27 | 10, 15, 20, 26 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 28 | 11, 12, 23 | grpsubid 18921 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 29 | 10, 20, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 30 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 31 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
| 32 | 11, 31, 23 | ogrpsub 20034 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 33 | 3, 20, 15, 20, 30, 32 | syl131anc 1385 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 34 | 29, 33 | eqbrtrrd 5119 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
| 35 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
| 36 | 11, 31, 12, 17 | orngmul 20768 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋)) ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍)) → 0 ≤ ((𝑌(-g‘𝑅)𝑋) · 𝑍)) |
| 37 | 1, 27, 34, 16, 35, 36 | syl122anc 1381 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝑌(-g‘𝑅)𝑋) · 𝑍)) |
| 38 | 11, 17, 23, 8, 15, 20, 16 | ringsubdir 20211 | . . . 4 ⊢ (𝜑 → ((𝑌(-g‘𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) |
| 39 | 37, 38 | breqtrd 5121 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) |
| 40 | eqid 2729 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 41 | 11, 31, 40 | omndadd 20025 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ≤ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) ≤ (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍))) |
| 42 | 6, 14, 25, 22, 39, 41 | syl131anc 1385 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) ≤ (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍))) |
| 43 | 11, 40, 12 | grplid 18864 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍)) |
| 44 | 10, 22, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍)) |
| 45 | 11, 40, 23 | grpnpcan 18929 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍)) |
| 46 | 10, 19, 22, 45 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍)) |
| 47 | 42, 44, 46 | 3brtr3d 5126 | 1 ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 lecple 17186 0gc0g 17361 Grpcgrp 18830 -gcsg 18832 oMndcomnd 20016 oGrpcogrp 20017 Ringcrg 20136 oRingcorng 20760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 df-omnd 20018 df-ogrp 20019 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-orng 20762 |
| This theorem is referenced by: orngrmullt 20773 |
| Copyright terms: Public domain | W3C validator |