Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmulle Structured version   Visualization version   GIF version

Theorem orngrmulle 31502
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
orngrmulle (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))

Proof of Theorem orngrmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 31497 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 31325 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 497 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 31496 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 19786 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 18605 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
16 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 19798 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
198, 15, 16, 18syl3anc 1370 . . . 4 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 19798 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
228, 20, 16, 21syl3anc 1370 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
23 eqid 2738 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 18653 . . . 4 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1370 . . 3 (𝜑 → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2611, 23grpsubcl 18653 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2710, 15, 20, 26syl3anc 1370 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2811, 12, 23grpsubid 18657 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
2910, 20, 28syl2anc 584 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
30 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
31 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3211, 31, 23ogrpsub 31339 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
333, 20, 15, 20, 30, 32syl131anc 1382 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3429, 33eqbrtrrd 5100 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
35 orngmulle.6 . . . . 5 (𝜑0 𝑍)
3611, 31, 12, 17orngmul 31499 . . . . 5 ((𝑅 ∈ oRing ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋)) ∧ (𝑍𝐵0 𝑍)) → 0 ((𝑌(-g𝑅)𝑋) · 𝑍))
371, 27, 34, 16, 35, 36syl122anc 1378 . . . 4 (𝜑0 ((𝑌(-g𝑅)𝑋) · 𝑍))
3811, 17, 23, 8, 15, 20, 16rngsubdir 19837 . . . 4 (𝜑 → ((𝑌(-g𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
3937, 38breqtrd 5102 . . 3 (𝜑0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
40 eqid 2738 . . . 4 (+g𝑅) = (+g𝑅)
4111, 31, 40omndadd 31329 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))) → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
426, 14, 25, 22, 39, 41syl131anc 1382 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
4311, 40, 12grplid 18607 . . 3 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4410, 22, 43syl2anc 584 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4511, 40, 23grpnpcan 18665 . . 3 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4610, 19, 22, 45syl3anc 1370 . 2 (𝜑 → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4742, 44, 463brtr3d 5107 1 (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   class class class wbr 5076  cfv 6435  (class class class)co 7277  Basecbs 16910  +gcplusg 16960  .rcmulr 16961  lecple 16967  0gc0g 17148  Grpcgrp 18575  -gcsg 18577  Ringcrg 19781  oMndcomnd 31320  oGrpcogrp 31321  oRingcorng 31491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mgp 19719  df-ur 19736  df-ring 19783  df-omnd 31322  df-ogrp 31323  df-orng 31493
This theorem is referenced by:  orngrmullt  31504
  Copyright terms: Public domain W3C validator