Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmulle Structured version   Visualization version   GIF version

Theorem orngrmulle 30879
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
orngrmulle (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))

Proof of Theorem orngrmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 30874 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 30703 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 499 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 30873 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 19301 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 18130 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
16 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 19310 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
198, 15, 16, 18syl3anc 1367 . . . 4 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 19310 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
228, 20, 16, 21syl3anc 1367 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
23 eqid 2821 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 18178 . . . 4 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1367 . . 3 (𝜑 → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2611, 23grpsubcl 18178 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2710, 15, 20, 26syl3anc 1367 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2811, 12, 23grpsubid 18182 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
2910, 20, 28syl2anc 586 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
30 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
31 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3211, 31, 23ogrpsub 30717 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
333, 20, 15, 20, 30, 32syl131anc 1379 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3429, 33eqbrtrrd 5089 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
35 orngmulle.6 . . . . 5 (𝜑0 𝑍)
3611, 31, 12, 17orngmul 30876 . . . . 5 ((𝑅 ∈ oRing ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋)) ∧ (𝑍𝐵0 𝑍)) → 0 ((𝑌(-g𝑅)𝑋) · 𝑍))
371, 27, 34, 16, 35, 36syl122anc 1375 . . . 4 (𝜑0 ((𝑌(-g𝑅)𝑋) · 𝑍))
3811, 17, 23, 8, 15, 20, 16rngsubdir 19349 . . . 4 (𝜑 → ((𝑌(-g𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
3937, 38breqtrd 5091 . . 3 (𝜑0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
40 eqid 2821 . . . 4 (+g𝑅) = (+g𝑅)
4111, 31, 40omndadd 30707 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))) → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
426, 14, 25, 22, 39, 41syl131anc 1379 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
4311, 40, 12grplid 18132 . . 3 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4410, 22, 43syl2anc 586 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4511, 40, 23grpnpcan 18190 . . 3 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4610, 19, 22, 45syl3anc 1367 . 2 (𝜑 → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4742, 44, 463brtr3d 5096 1 (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  lecple 16571  0gc0g 16712  Grpcgrp 18102  -gcsg 18104  Ringcrg 19296  oMndcomnd 30698  oGrpcogrp 30699  oRingcorng 30868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mgp 19239  df-ur 19251  df-ring 19298  df-omnd 30700  df-ogrp 30701  df-orng 30870
This theorem is referenced by:  orngrmullt  30881
  Copyright terms: Public domain W3C validator