Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngrmulle | Structured version Visualization version GIF version |
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
Ref | Expression |
---|---|
ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
ornglmullt.t | ⊢ · = (.r‘𝑅) |
ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
orngmulle.l | ⊢ ≤ = (le‘𝑅) |
orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
Ref | Expression |
---|---|
orngrmulle | ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
2 | orngogrp 31402 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
4 | isogrp 31230 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
7 | orngring 31401 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | ringgrp 19703 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
13 | 11, 12 | grpidcl 18522 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
15 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
16 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
18 | 11, 17 | ringcl 19715 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 · 𝑍) ∈ 𝐵) |
19 | 8, 15, 16, 18 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑍) ∈ 𝐵) |
20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 11, 17 | ringcl 19715 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
22 | 8, 20, 16, 21 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
23 | eqid 2738 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
24 | 11, 23 | grpsubcl 18570 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵) |
25 | 10, 19, 22, 24 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵) |
26 | 11, 23 | grpsubcl 18570 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
27 | 10, 15, 20, 26 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
28 | 11, 12, 23 | grpsubid 18574 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
29 | 10, 20, 28 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
30 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
31 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
32 | 11, 31, 23 | ogrpsub 31244 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
33 | 3, 20, 15, 20, 30, 32 | syl131anc 1381 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
34 | 29, 33 | eqbrtrrd 5094 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
35 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
36 | 11, 31, 12, 17 | orngmul 31404 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋)) ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍)) → 0 ≤ ((𝑌(-g‘𝑅)𝑋) · 𝑍)) |
37 | 1, 27, 34, 16, 35, 36 | syl122anc 1377 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝑌(-g‘𝑅)𝑋) · 𝑍)) |
38 | 11, 17, 23, 8, 15, 20, 16 | rngsubdir 19754 | . . . 4 ⊢ (𝜑 → ((𝑌(-g‘𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) |
39 | 37, 38 | breqtrd 5096 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) |
40 | eqid 2738 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
41 | 11, 31, 40 | omndadd 31234 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ≤ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) ≤ (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍))) |
42 | 6, 14, 25, 22, 39, 41 | syl131anc 1381 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) ≤ (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍))) |
43 | 11, 40, 12 | grplid 18524 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍)) |
44 | 10, 22, 43 | syl2anc 583 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍)) |
45 | 11, 40, 23 | grpnpcan 18582 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍)) |
46 | 10, 19, 22, 45 | syl3anc 1369 | . 2 ⊢ (𝜑 → (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍)) |
47 | 42, 44, 46 | 3brtr3d 5101 | 1 ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 lecple 16895 0gc0g 17067 Grpcgrp 18492 -gcsg 18494 Ringcrg 19698 oMndcomnd 31225 oGrpcogrp 31226 oRingcorng 31396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 df-omnd 31227 df-ogrp 31228 df-orng 31398 |
This theorem is referenced by: orngrmullt 31409 |
Copyright terms: Public domain | W3C validator |