![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngrmulle | Structured version Visualization version GIF version |
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
Ref | Expression |
---|---|
ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
ornglmullt.t | ⊢ · = (.r‘𝑅) |
ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
orngmulle.l | ⊢ ≤ = (le‘𝑅) |
orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
Ref | Expression |
---|---|
orngrmulle | ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
2 | orngogrp 33296 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
4 | isogrp 33052 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
7 | orngring 33295 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | ringgrp 20265 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
13 | 11, 12 | grpidcl 19005 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
15 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
16 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
18 | 11, 17 | ringcl 20277 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 · 𝑍) ∈ 𝐵) |
19 | 8, 15, 16, 18 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑍) ∈ 𝐵) |
20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 11, 17 | ringcl 20277 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
22 | 8, 20, 16, 21 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
23 | eqid 2740 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
24 | 11, 23 | grpsubcl 19060 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵) |
25 | 10, 19, 22, 24 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵) |
26 | 11, 23 | grpsubcl 19060 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
27 | 10, 15, 20, 26 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
28 | 11, 12, 23 | grpsubid 19064 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
29 | 10, 20, 28 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
30 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
31 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
32 | 11, 31, 23 | ogrpsub 33066 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
33 | 3, 20, 15, 20, 30, 32 | syl131anc 1383 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
34 | 29, 33 | eqbrtrrd 5190 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
35 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
36 | 11, 31, 12, 17 | orngmul 33298 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋)) ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍)) → 0 ≤ ((𝑌(-g‘𝑅)𝑋) · 𝑍)) |
37 | 1, 27, 34, 16, 35, 36 | syl122anc 1379 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝑌(-g‘𝑅)𝑋) · 𝑍)) |
38 | 11, 17, 23, 8, 15, 20, 16 | ringsubdir 20331 | . . . 4 ⊢ (𝜑 → ((𝑌(-g‘𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) |
39 | 37, 38 | breqtrd 5192 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) |
40 | eqid 2740 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
41 | 11, 31, 40 | omndadd 33056 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ≤ ((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))) → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) ≤ (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍))) |
42 | 6, 14, 25, 22, 39, 41 | syl131anc 1383 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) ≤ (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍))) |
43 | 11, 40, 12 | grplid 19007 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍)) |
44 | 10, 22, 43 | syl2anc 583 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍)) |
45 | 11, 40, 23 | grpnpcan 19072 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍)) |
46 | 10, 19, 22, 45 | syl3anc 1371 | . 2 ⊢ (𝜑 → (((𝑌 · 𝑍)(-g‘𝑅)(𝑋 · 𝑍))(+g‘𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍)) |
47 | 42, 44, 46 | 3brtr3d 5197 | 1 ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 lecple 17318 0gc0g 17499 Grpcgrp 18973 -gcsg 18975 Ringcrg 20260 oMndcomnd 33047 oGrpcogrp 33048 oRingcorng 33290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-omnd 33049 df-ogrp 33050 df-orng 33292 |
This theorem is referenced by: orngrmullt 33303 |
Copyright terms: Public domain | W3C validator |