MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngrmulle Structured version   Visualization version   GIF version

Theorem orngrmulle 20771
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
orngrmulle (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))

Proof of Theorem orngrmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 20766 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 20021 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 496 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 20765 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 20141 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 18862 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
16 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 20153 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
198, 15, 16, 18syl3anc 1373 . . . 4 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 20153 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
228, 20, 16, 21syl3anc 1373 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
23 eqid 2729 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 18917 . . . 4 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1373 . . 3 (𝜑 → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2611, 23grpsubcl 18917 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2710, 15, 20, 26syl3anc 1373 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2811, 12, 23grpsubid 18921 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
2910, 20, 28syl2anc 584 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
30 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
31 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3211, 31, 23ogrpsub 20034 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
333, 20, 15, 20, 30, 32syl131anc 1385 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3429, 33eqbrtrrd 5119 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
35 orngmulle.6 . . . . 5 (𝜑0 𝑍)
3611, 31, 12, 17orngmul 20768 . . . . 5 ((𝑅 ∈ oRing ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋)) ∧ (𝑍𝐵0 𝑍)) → 0 ((𝑌(-g𝑅)𝑋) · 𝑍))
371, 27, 34, 16, 35, 36syl122anc 1381 . . . 4 (𝜑0 ((𝑌(-g𝑅)𝑋) · 𝑍))
3811, 17, 23, 8, 15, 20, 16ringsubdir 20211 . . . 4 (𝜑 → ((𝑌(-g𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
3937, 38breqtrd 5121 . . 3 (𝜑0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
40 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
4111, 31, 40omndadd 20025 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))) → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
426, 14, 25, 22, 39, 41syl131anc 1385 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
4311, 40, 12grplid 18864 . . 3 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4410, 22, 43syl2anc 584 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4511, 40, 23grpnpcan 18929 . . 3 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4610, 19, 22, 45syl3anc 1373 . 2 (𝜑 → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4742, 44, 463brtr3d 5126 1 (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  lecple 17186  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  oMndcomnd 20016  oGrpcogrp 20017  Ringcrg 20136  oRingcorng 20760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-cmn 19679  df-abl 19680  df-omnd 20018  df-ogrp 20019  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-orng 20762
This theorem is referenced by:  orngrmullt  20773
  Copyright terms: Public domain W3C validator