Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suborng Structured version   Visualization version   GIF version

Theorem suborng 33300
Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
suborng ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oRing)

Proof of Theorem suborng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ Ring)
2 ringgrp 20154 . . . 4 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
32adantl 481 . . 3 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ Grp)
4 orngogrp 33286 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
5 isogrp 33023 . . . . . 6 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
65simprbi 496 . . . . 5 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
74, 6syl 17 . . . 4 (𝑅 ∈ oRing → 𝑅 ∈ oMnd)
8 ringmnd 20159 . . . 4 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Mnd)
9 submomnd 33031 . . . 4 ((𝑅 ∈ oMnd ∧ (𝑅s 𝐴) ∈ Mnd) → (𝑅s 𝐴) ∈ oMnd)
107, 8, 9syl2an 596 . . 3 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oMnd)
11 isogrp 33023 . . 3 ((𝑅s 𝐴) ∈ oGrp ↔ ((𝑅s 𝐴) ∈ Grp ∧ (𝑅s 𝐴) ∈ oMnd))
123, 10, 11sylanbrc 583 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oGrp)
13 simp-4l 782 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑅 ∈ oRing)
14 reldmress 17209 . . . . . . . . . . . . . . 15 Rel dom ↾s
1514ovprc2 7430 . . . . . . . . . . . . . 14 𝐴 ∈ V → (𝑅s 𝐴) = ∅)
1615fveq2d 6865 . . . . . . . . . . . . 13 𝐴 ∈ V → (Base‘(𝑅s 𝐴)) = (Base‘∅))
1716adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) = (Base‘∅))
18 base0 17191 . . . . . . . . . . . 12 ∅ = (Base‘∅)
1917, 18eqtr4di 2783 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) = ∅)
20 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
21 eqid 2730 . . . . . . . . . . . . . . 15 (1r‘(𝑅s 𝐴)) = (1r‘(𝑅s 𝐴))
2220, 21ringidcl 20181 . . . . . . . . . . . . . 14 ((𝑅s 𝐴) ∈ Ring → (1r‘(𝑅s 𝐴)) ∈ (Base‘(𝑅s 𝐴)))
2322ne0d 4308 . . . . . . . . . . . . 13 ((𝑅s 𝐴) ∈ Ring → (Base‘(𝑅s 𝐴)) ≠ ∅)
2423ad2antlr 727 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) ≠ ∅)
2524neneqd 2931 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → ¬ (Base‘(𝑅s 𝐴)) = ∅)
2619, 25condan 817 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → 𝐴 ∈ V)
27 eqid 2730 . . . . . . . . . . . 12 (𝑅s 𝐴) = (𝑅s 𝐴)
28 eqid 2730 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2927, 28ressbas 17213 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝐴)))
30 inss2 4204 . . . . . . . . . . 11 (𝐴 ∩ (Base‘𝑅)) ⊆ (Base‘𝑅)
3129, 30eqsstrrdi 3995 . . . . . . . . . 10 (𝐴 ∈ V → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
3226, 31syl 17 . . . . . . . . 9 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
3332ad3antrrr 730 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
34 simpllr 775 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑎 ∈ (Base‘(𝑅s 𝐴)))
3533, 34sseldd 3950 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑎 ∈ (Base‘𝑅))
36 simprl 770 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎)
37 orngring 33285 . . . . . . . . . . . . . . . 16 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
38 ringgrp 20154 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ oRing → 𝑅 ∈ Grp)
4039adantr 480 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → 𝑅 ∈ Grp)
4128ressinbas 17222 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝑅s 𝐴) = (𝑅s (𝐴 ∩ (Base‘𝑅))))
4229oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝑅s (𝐴 ∩ (Base‘𝑅))) = (𝑅s (Base‘(𝑅s 𝐴))))
4341, 42eqtrd 2765 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → (𝑅s 𝐴) = (𝑅s (Base‘(𝑅s 𝐴))))
4426, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) = (𝑅s (Base‘(𝑅s 𝐴))))
4544, 3eqeltrrd 2830 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s (Base‘(𝑅s 𝐴))) ∈ Grp)
4628issubg 19065 . . . . . . . . . . . . . 14 ((Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅) ∧ (𝑅s (Base‘(𝑅s 𝐴))) ∈ Grp))
4740, 32, 45, 46syl3anbrc 1344 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅))
48 eqid 2730 . . . . . . . . . . . . . 14 (𝑅s (Base‘(𝑅s 𝐴))) = (𝑅s (Base‘(𝑅s 𝐴)))
49 eqid 2730 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5048, 49subg0 19071 . . . . . . . . . . . . 13 ((Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5147, 50syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g𝑅) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5244fveq2d 6865 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5351, 52eqtr4d 2768 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
5453ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
5526ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝐴 ∈ V)
56 eqid 2730 . . . . . . . . . . . 12 (le‘𝑅) = (le‘𝑅)
5727, 56ressle 17350 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝑅) = (le‘(𝑅s 𝐴)))
5855, 57syl 17 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (le‘𝑅) = (le‘(𝑅s 𝐴)))
59 eqidd 2731 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝑎 = 𝑎)
6054, 58, 59breq123d 5124 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → ((0g𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎))
6160adantr 480 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎))
6236, 61mpbird 257 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)𝑎)
63 simplr 768 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑏 ∈ (Base‘(𝑅s 𝐴)))
6433, 63sseldd 3950 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑏 ∈ (Base‘𝑅))
65 simprr 772 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)
66 eqidd 2731 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝑏 = 𝑏)
6754, 58, 66breq123d 5124 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → ((0g𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏))
6867adantr 480 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏))
6965, 68mpbird 257 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)𝑏)
70 eqid 2730 . . . . . . . 8 (.r𝑅) = (.r𝑅)
7128, 56, 49, 70orngmul 33288 . . . . . . 7 ((𝑅 ∈ oRing ∧ (𝑎 ∈ (Base‘𝑅) ∧ (0g𝑅)(le‘𝑅)𝑎) ∧ (𝑏 ∈ (Base‘𝑅) ∧ (0g𝑅)(le‘𝑅)𝑏)) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))
7213, 35, 62, 64, 69, 71syl122anc 1381 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))
7354adantr 480 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
7458adantr 480 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (le‘𝑅) = (le‘(𝑅s 𝐴)))
7555adantr 480 . . . . . . . . 9 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝐴 ∈ V)
7627, 70ressmulr 17277 . . . . . . . . 9 (𝐴 ∈ V → (.r𝑅) = (.r‘(𝑅s 𝐴)))
7775, 76syl 17 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (.r𝑅) = (.r‘(𝑅s 𝐴)))
7877oveqd 7407 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (𝑎(.r𝑅)𝑏) = (𝑎(.r‘(𝑅s 𝐴))𝑏))
7973, 74, 78breq123d 5124 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏) ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8072, 79mpbid 232 . . . . 5 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏))
8180ex 412 . . . 4 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8281anasss 466 . . 3 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝑎 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴)))) → (((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8382ralrimivva 3181 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → ∀𝑎 ∈ (Base‘(𝑅s 𝐴))∀𝑏 ∈ (Base‘(𝑅s 𝐴))(((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
84 eqid 2730 . . 3 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
85 eqid 2730 . . 3 (.r‘(𝑅s 𝐴)) = (.r‘(𝑅s 𝐴))
86 eqid 2730 . . 3 (le‘(𝑅s 𝐴)) = (le‘(𝑅s 𝐴))
8720, 84, 85, 86isorng 33284 . 2 ((𝑅s 𝐴) ∈ oRing ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝑅s 𝐴) ∈ oGrp ∧ ∀𝑎 ∈ (Base‘(𝑅s 𝐴))∀𝑏 ∈ (Base‘(𝑅s 𝐴))(((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏))))
881, 12, 83, 87syl3anbrc 1344 1 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  .rcmulr 17228  lecple 17234  0gc0g 17409  Mndcmnd 18668  Grpcgrp 18872  SubGrpcsubg 19059  1rcur 20097  Ringcrg 20149  oMndcomnd 33018  oGrpcogrp 33019  oRingcorng 33280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-ple 17247  df-0g 17411  df-poset 18281  df-toset 18383  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-subg 19062  df-mgp 20057  df-ur 20098  df-ring 20151  df-omnd 33020  df-ogrp 33021  df-orng 33282
This theorem is referenced by:  subofld  33301
  Copyright terms: Public domain W3C validator