Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suborng Structured version   Visualization version   GIF version

Theorem suborng 32703
Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
suborng ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oRing)

Proof of Theorem suborng
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . 2 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ Ring)
2 ringgrp 20132 . . . 4 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
32adantl 480 . . 3 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
4 orngogrp 32689 . . . . 5 (𝑅 ∈ oRing β†’ 𝑅 ∈ oGrp)
5 isogrp 32490 . . . . . 6 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
65simprbi 495 . . . . 5 (𝑅 ∈ oGrp β†’ 𝑅 ∈ oMnd)
74, 6syl 17 . . . 4 (𝑅 ∈ oRing β†’ 𝑅 ∈ oMnd)
8 ringmnd 20137 . . . 4 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (𝑅 β†Ύs 𝐴) ∈ Mnd)
9 submomnd 32498 . . . 4 ((𝑅 ∈ oMnd ∧ (𝑅 β†Ύs 𝐴) ∈ Mnd) β†’ (𝑅 β†Ύs 𝐴) ∈ oMnd)
107, 8, 9syl2an 594 . . 3 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oMnd)
11 isogrp 32490 . . 3 ((𝑅 β†Ύs 𝐴) ∈ oGrp ↔ ((𝑅 β†Ύs 𝐴) ∈ Grp ∧ (𝑅 β†Ύs 𝐴) ∈ oMnd))
123, 10, 11sylanbrc 581 . 2 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oGrp)
13 simp-4l 779 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝑅 ∈ oRing)
14 reldmress 17179 . . . . . . . . . . . . . . 15 Rel dom β†Ύs
1514ovprc2 7451 . . . . . . . . . . . . . 14 (Β¬ 𝐴 ∈ V β†’ (𝑅 β†Ύs 𝐴) = βˆ…)
1615fveq2d 6894 . . . . . . . . . . . . 13 (Β¬ 𝐴 ∈ V β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = (Baseβ€˜βˆ…))
1716adantl 480 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = (Baseβ€˜βˆ…))
18 base0 17153 . . . . . . . . . . . 12 βˆ… = (Baseβ€˜βˆ…)
1917, 18eqtr4di 2788 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = βˆ…)
20 eqid 2730 . . . . . . . . . . . . . . 15 (Baseβ€˜(𝑅 β†Ύs 𝐴)) = (Baseβ€˜(𝑅 β†Ύs 𝐴))
21 eqid 2730 . . . . . . . . . . . . . . 15 (1rβ€˜(𝑅 β†Ύs 𝐴)) = (1rβ€˜(𝑅 β†Ύs 𝐴))
2220, 21ringidcl 20154 . . . . . . . . . . . . . 14 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (1rβ€˜(𝑅 β†Ύs 𝐴)) ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))
2322ne0d 4334 . . . . . . . . . . . . 13 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) β‰  βˆ…)
2423ad2antlr 723 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) β‰  βˆ…)
2524neneqd 2943 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ Β¬ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = βˆ…)
2619, 25condan 814 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ 𝐴 ∈ V)
27 eqid 2730 . . . . . . . . . . . 12 (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴)
28 eqid 2730 . . . . . . . . . . . 12 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2927, 28ressbas 17183 . . . . . . . . . . 11 (𝐴 ∈ V β†’ (𝐴 ∩ (Baseβ€˜π‘…)) = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
30 inss2 4228 . . . . . . . . . . 11 (𝐴 ∩ (Baseβ€˜π‘…)) βŠ† (Baseβ€˜π‘…)
3129, 30eqsstrrdi 4036 . . . . . . . . . 10 (𝐴 ∈ V β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…))
3226, 31syl 17 . . . . . . . . 9 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…))
3332ad3antrrr 726 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…))
34 simpllr 772 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))
3533, 34sseldd 3982 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ π‘Ž ∈ (Baseβ€˜π‘…))
36 simprl 767 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž)
37 orngring 32688 . . . . . . . . . . . . . . . 16 (𝑅 ∈ oRing β†’ 𝑅 ∈ Ring)
38 ringgrp 20132 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ oRing β†’ 𝑅 ∈ Grp)
4039adantr 479 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ 𝑅 ∈ Grp)
4128ressinbas 17194 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs (𝐴 ∩ (Baseβ€˜π‘…))))
4229oveq2d 7427 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V β†’ (𝑅 β†Ύs (𝐴 ∩ (Baseβ€˜π‘…))) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))))
4341, 42eqtrd 2770 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))))
4426, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))))
4544, 3eqeltrrd 2832 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∈ Grp)
4628issubg 19042 . . . . . . . . . . . . . 14 ((Baseβ€˜(𝑅 β†Ύs 𝐴)) ∈ (SubGrpβ€˜π‘…) ↔ (𝑅 ∈ Grp ∧ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…) ∧ (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∈ Grp))
4740, 32, 45, 46syl3anbrc 1341 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) ∈ (SubGrpβ€˜π‘…))
48 eqid 2730 . . . . . . . . . . . . . 14 (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))
49 eqid 2730 . . . . . . . . . . . . . 14 (0gβ€˜π‘…) = (0gβ€˜π‘…)
5048, 49subg0 19048 . . . . . . . . . . . . 13 ((Baseβ€˜(𝑅 β†Ύs 𝐴)) ∈ (SubGrpβ€˜π‘…) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))))
5147, 50syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))))
5244fveq2d 6894 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴)) = (0gβ€˜(𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))))
5351, 52eqtr4d 2773 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs 𝐴)))
5453ad2antrr 722 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs 𝐴)))
5526ad2antrr 722 . . . . . . . . . . 11 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ 𝐴 ∈ V)
56 eqid 2730 . . . . . . . . . . . 12 (leβ€˜π‘…) = (leβ€˜π‘…)
5727, 56ressle 17329 . . . . . . . . . . 11 (𝐴 ∈ V β†’ (leβ€˜π‘…) = (leβ€˜(𝑅 β†Ύs 𝐴)))
5855, 57syl 17 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ (leβ€˜π‘…) = (leβ€˜(𝑅 β†Ύs 𝐴)))
59 eqidd 2731 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ π‘Ž = π‘Ž)
6054, 58, 59breq123d 5161 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž))
6160adantr 479 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž))
6236, 61mpbird 256 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž)
63 simplr 765 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))
6433, 63sseldd 3982 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝑏 ∈ (Baseβ€˜π‘…))
65 simprr 769 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)
66 eqidd 2731 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ 𝑏 = 𝑏)
6754, 58, 66breq123d 5161 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)𝑏 ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏))
6867adantr 479 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)𝑏 ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏))
6965, 68mpbird 256 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)𝑏)
70 eqid 2730 . . . . . . . 8 (.rβ€˜π‘…) = (.rβ€˜π‘…)
7128, 56, 49, 70orngmul 32691 . . . . . . 7 ((𝑅 ∈ oRing ∧ (π‘Ž ∈ (Baseβ€˜π‘…) ∧ (0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž) ∧ (𝑏 ∈ (Baseβ€˜π‘…) ∧ (0gβ€˜π‘…)(leβ€˜π‘…)𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏))
7213, 35, 62, 64, 69, 71syl122anc 1377 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏))
7354adantr 479 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs 𝐴)))
7458adantr 479 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (leβ€˜π‘…) = (leβ€˜(𝑅 β†Ύs 𝐴)))
7555adantr 479 . . . . . . . . 9 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝐴 ∈ V)
7627, 70ressmulr 17256 . . . . . . . . 9 (𝐴 ∈ V β†’ (.rβ€˜π‘…) = (.rβ€˜(𝑅 β†Ύs 𝐴)))
7775, 76syl 17 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (.rβ€˜π‘…) = (.rβ€˜(𝑅 β†Ύs 𝐴)))
7877oveqd 7428 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (π‘Ž(.rβ€˜π‘…)𝑏) = (π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏))
7973, 74, 78breq123d 5161 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏) ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
8072, 79mpbid 231 . . . . 5 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏))
8180ex 411 . . . 4 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ (((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
8281anasss 465 . . 3 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))) β†’ (((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
8382ralrimivva 3198 . 2 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ βˆ€π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))βˆ€π‘ ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))(((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
84 eqid 2730 . . 3 (0gβ€˜(𝑅 β†Ύs 𝐴)) = (0gβ€˜(𝑅 β†Ύs 𝐴))
85 eqid 2730 . . 3 (.rβ€˜(𝑅 β†Ύs 𝐴)) = (.rβ€˜(𝑅 β†Ύs 𝐴))
86 eqid 2730 . . 3 (leβ€˜(𝑅 β†Ύs 𝐴)) = (leβ€˜(𝑅 β†Ύs 𝐴))
8720, 84, 85, 86isorng 32687 . 2 ((𝑅 β†Ύs 𝐴) ∈ oRing ↔ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ oGrp ∧ βˆ€π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))βˆ€π‘ ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))(((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏))))
881, 12, 83, 87syl3anbrc 1341 1 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oRing)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  Vcvv 3472   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148   β†Ύs cress 17177  .rcmulr 17202  lecple 17208  0gc0g 17389  Mndcmnd 18659  Grpcgrp 18855  SubGrpcsubg 19036  1rcur 20075  Ringcrg 20127  oMndcomnd 32485  oGrpcogrp 32486  oRingcorng 32683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-dec 12682  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-ple 17221  df-0g 17391  df-poset 18270  df-toset 18374  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-subg 19039  df-mgp 20029  df-ur 20076  df-ring 20129  df-omnd 32487  df-ogrp 32488  df-orng 32685
This theorem is referenced by:  subofld  32704
  Copyright terms: Public domain W3C validator