Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suborng Structured version   Visualization version   GIF version

Theorem suborng 32421
Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
suborng ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oRing)

Proof of Theorem suborng
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . 2 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ Ring)
2 ringgrp 20054 . . . 4 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
32adantl 482 . . 3 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
4 orngogrp 32407 . . . . 5 (𝑅 ∈ oRing β†’ 𝑅 ∈ oGrp)
5 isogrp 32207 . . . . . 6 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
65simprbi 497 . . . . 5 (𝑅 ∈ oGrp β†’ 𝑅 ∈ oMnd)
74, 6syl 17 . . . 4 (𝑅 ∈ oRing β†’ 𝑅 ∈ oMnd)
8 ringmnd 20059 . . . 4 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (𝑅 β†Ύs 𝐴) ∈ Mnd)
9 submomnd 32215 . . . 4 ((𝑅 ∈ oMnd ∧ (𝑅 β†Ύs 𝐴) ∈ Mnd) β†’ (𝑅 β†Ύs 𝐴) ∈ oMnd)
107, 8, 9syl2an 596 . . 3 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oMnd)
11 isogrp 32207 . . 3 ((𝑅 β†Ύs 𝐴) ∈ oGrp ↔ ((𝑅 β†Ύs 𝐴) ∈ Grp ∧ (𝑅 β†Ύs 𝐴) ∈ oMnd))
123, 10, 11sylanbrc 583 . 2 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oGrp)
13 simp-4l 781 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝑅 ∈ oRing)
14 reldmress 17171 . . . . . . . . . . . . . . 15 Rel dom β†Ύs
1514ovprc2 7445 . . . . . . . . . . . . . 14 (Β¬ 𝐴 ∈ V β†’ (𝑅 β†Ύs 𝐴) = βˆ…)
1615fveq2d 6892 . . . . . . . . . . . . 13 (Β¬ 𝐴 ∈ V β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = (Baseβ€˜βˆ…))
1716adantl 482 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = (Baseβ€˜βˆ…))
18 base0 17145 . . . . . . . . . . . 12 βˆ… = (Baseβ€˜βˆ…)
1917, 18eqtr4di 2790 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = βˆ…)
20 eqid 2732 . . . . . . . . . . . . . . 15 (Baseβ€˜(𝑅 β†Ύs 𝐴)) = (Baseβ€˜(𝑅 β†Ύs 𝐴))
21 eqid 2732 . . . . . . . . . . . . . . 15 (1rβ€˜(𝑅 β†Ύs 𝐴)) = (1rβ€˜(𝑅 β†Ύs 𝐴))
2220, 21ringidcl 20076 . . . . . . . . . . . . . 14 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (1rβ€˜(𝑅 β†Ύs 𝐴)) ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))
2322ne0d 4334 . . . . . . . . . . . . 13 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) β‰  βˆ…)
2423ad2antlr 725 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) β‰  βˆ…)
2524neneqd 2945 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ Β¬ 𝐴 ∈ V) β†’ Β¬ (Baseβ€˜(𝑅 β†Ύs 𝐴)) = βˆ…)
2619, 25condan 816 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ 𝐴 ∈ V)
27 eqid 2732 . . . . . . . . . . . 12 (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴)
28 eqid 2732 . . . . . . . . . . . 12 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2927, 28ressbas 17175 . . . . . . . . . . 11 (𝐴 ∈ V β†’ (𝐴 ∩ (Baseβ€˜π‘…)) = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
30 inss2 4228 . . . . . . . . . . 11 (𝐴 ∩ (Baseβ€˜π‘…)) βŠ† (Baseβ€˜π‘…)
3129, 30eqsstrrdi 4036 . . . . . . . . . 10 (𝐴 ∈ V β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…))
3226, 31syl 17 . . . . . . . . 9 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…))
3332ad3antrrr 728 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…))
34 simpllr 774 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))
3533, 34sseldd 3982 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ π‘Ž ∈ (Baseβ€˜π‘…))
36 simprl 769 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž)
37 orngring 32406 . . . . . . . . . . . . . . . 16 (𝑅 ∈ oRing β†’ 𝑅 ∈ Ring)
38 ringgrp 20054 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ oRing β†’ 𝑅 ∈ Grp)
4039adantr 481 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ 𝑅 ∈ Grp)
4128ressinbas 17186 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs (𝐴 ∩ (Baseβ€˜π‘…))))
4229oveq2d 7421 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V β†’ (𝑅 β†Ύs (𝐴 ∩ (Baseβ€˜π‘…))) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))))
4341, 42eqtrd 2772 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))))
4426, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))))
4544, 3eqeltrrd 2834 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∈ Grp)
4628issubg 19000 . . . . . . . . . . . . . 14 ((Baseβ€˜(𝑅 β†Ύs 𝐴)) ∈ (SubGrpβ€˜π‘…) ↔ (𝑅 ∈ Grp ∧ (Baseβ€˜(𝑅 β†Ύs 𝐴)) βŠ† (Baseβ€˜π‘…) ∧ (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∈ Grp))
4740, 32, 45, 46syl3anbrc 1343 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (Baseβ€˜(𝑅 β†Ύs 𝐴)) ∈ (SubGrpβ€˜π‘…))
48 eqid 2732 . . . . . . . . . . . . . 14 (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴))) = (𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))
49 eqid 2732 . . . . . . . . . . . . . 14 (0gβ€˜π‘…) = (0gβ€˜π‘…)
5048, 49subg0 19006 . . . . . . . . . . . . 13 ((Baseβ€˜(𝑅 β†Ύs 𝐴)) ∈ (SubGrpβ€˜π‘…) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))))
5147, 50syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))))
5244fveq2d 6892 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴)) = (0gβ€˜(𝑅 β†Ύs (Baseβ€˜(𝑅 β†Ύs 𝐴)))))
5351, 52eqtr4d 2775 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs 𝐴)))
5453ad2antrr 724 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs 𝐴)))
5526ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ 𝐴 ∈ V)
56 eqid 2732 . . . . . . . . . . . 12 (leβ€˜π‘…) = (leβ€˜π‘…)
5727, 56ressle 17321 . . . . . . . . . . 11 (𝐴 ∈ V β†’ (leβ€˜π‘…) = (leβ€˜(𝑅 β†Ύs 𝐴)))
5855, 57syl 17 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ (leβ€˜π‘…) = (leβ€˜(𝑅 β†Ύs 𝐴)))
59 eqidd 2733 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ π‘Ž = π‘Ž)
6054, 58, 59breq123d 5161 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž))
6160adantr 481 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž))
6236, 61mpbird 256 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž)
63 simplr 767 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))
6433, 63sseldd 3982 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝑏 ∈ (Baseβ€˜π‘…))
65 simprr 771 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)
66 eqidd 2733 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ 𝑏 = 𝑏)
6754, 58, 66breq123d 5161 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)𝑏 ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏))
6867adantr 481 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)𝑏 ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏))
6965, 68mpbird 256 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)𝑏)
70 eqid 2732 . . . . . . . 8 (.rβ€˜π‘…) = (.rβ€˜π‘…)
7128, 56, 49, 70orngmul 32409 . . . . . . 7 ((𝑅 ∈ oRing ∧ (π‘Ž ∈ (Baseβ€˜π‘…) ∧ (0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž) ∧ (𝑏 ∈ (Baseβ€˜π‘…) ∧ (0gβ€˜π‘…)(leβ€˜π‘…)𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏))
7213, 35, 62, 64, 69, 71syl122anc 1379 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏))
7354adantr 481 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜π‘…) = (0gβ€˜(𝑅 β†Ύs 𝐴)))
7458adantr 481 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (leβ€˜π‘…) = (leβ€˜(𝑅 β†Ύs 𝐴)))
7555adantr 481 . . . . . . . . 9 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ 𝐴 ∈ V)
7627, 70ressmulr 17248 . . . . . . . . 9 (𝐴 ∈ V β†’ (.rβ€˜π‘…) = (.rβ€˜(𝑅 β†Ύs 𝐴)))
7775, 76syl 17 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (.rβ€˜π‘…) = (.rβ€˜(𝑅 β†Ύs 𝐴)))
7877oveqd 7422 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (π‘Ž(.rβ€˜π‘…)𝑏) = (π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏))
7973, 74, 78breq123d 5161 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ ((0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏) ↔ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
8072, 79mpbid 231 . . . . 5 (((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ ((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏)) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏))
8180ex 413 . . . 4 ((((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))) β†’ (((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
8281anasss 467 . . 3 (((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)) ∧ 𝑏 ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴)))) β†’ (((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
8382ralrimivva 3200 . 2 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ βˆ€π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))βˆ€π‘ ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))(((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏)))
84 eqid 2732 . . 3 (0gβ€˜(𝑅 β†Ύs 𝐴)) = (0gβ€˜(𝑅 β†Ύs 𝐴))
85 eqid 2732 . . 3 (.rβ€˜(𝑅 β†Ύs 𝐴)) = (.rβ€˜(𝑅 β†Ύs 𝐴))
86 eqid 2732 . . 3 (leβ€˜(𝑅 β†Ύs 𝐴)) = (leβ€˜(𝑅 β†Ύs 𝐴))
8720, 84, 85, 86isorng 32405 . 2 ((𝑅 β†Ύs 𝐴) ∈ oRing ↔ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ oGrp ∧ βˆ€π‘Ž ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))βˆ€π‘ ∈ (Baseβ€˜(𝑅 β†Ύs 𝐴))(((0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))π‘Ž ∧ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))𝑏) β†’ (0gβ€˜(𝑅 β†Ύs 𝐴))(leβ€˜(𝑅 β†Ύs 𝐴))(π‘Ž(.rβ€˜(𝑅 β†Ύs 𝐴))𝑏))))
881, 12, 83, 87syl3anbrc 1343 1 ((𝑅 ∈ oRing ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) β†’ (𝑅 β†Ύs 𝐴) ∈ oRing)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140   β†Ύs cress 17169  .rcmulr 17194  lecple 17200  0gc0g 17381  Mndcmnd 18621  Grpcgrp 18815  SubGrpcsubg 18994  1rcur 19998  Ringcrg 20049  oMndcomnd 32202  oGrpcogrp 32203  oRingcorng 32401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-dec 12674  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-ple 17213  df-0g 17383  df-poset 18262  df-toset 18366  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-subg 18997  df-mgp 19982  df-ur 19999  df-ring 20051  df-omnd 32204  df-ogrp 32205  df-orng 32403
This theorem is referenced by:  subofld  32422
  Copyright terms: Public domain W3C validator