Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. 2
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ Ring) |
2 | | ringgrp 19703 |
. . . 4
⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) |
3 | 2 | adantl 481 |
. . 3
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ Grp) |
4 | | orngogrp 31402 |
. . . . 5
⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
5 | | isogrp 31230 |
. . . . . 6
⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) |
6 | 5 | simprbi 496 |
. . . . 5
⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ (𝑅 ∈ oRing → 𝑅 ∈ oMnd) |
8 | | ringmnd 19708 |
. . . 4
⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Mnd) |
9 | | submomnd 31238 |
. . . 4
⊢ ((𝑅 ∈ oMnd ∧ (𝑅 ↾s 𝐴) ∈ Mnd) → (𝑅 ↾s 𝐴) ∈ oMnd) |
10 | 7, 8, 9 | syl2an 595 |
. . 3
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oMnd) |
11 | | isogrp 31230 |
. . 3
⊢ ((𝑅 ↾s 𝐴) ∈ oGrp ↔ ((𝑅 ↾s 𝐴) ∈ Grp ∧ (𝑅 ↾s 𝐴) ∈ oMnd)) |
12 | 3, 10, 11 | sylanbrc 582 |
. 2
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oGrp) |
13 | | simp-4l 779 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → 𝑅 ∈ oRing) |
14 | | reldmress 16869 |
. . . . . . . . . . . . . . 15
⊢ Rel dom
↾s |
15 | 14 | ovprc2 7295 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐴 ∈ V → (𝑅 ↾s 𝐴) = ∅) |
16 | 15 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (¬
𝐴 ∈ V →
(Base‘(𝑅
↾s 𝐴)) =
(Base‘∅)) |
17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) →
(Base‘(𝑅
↾s 𝐴)) =
(Base‘∅)) |
18 | | base0 16845 |
. . . . . . . . . . . 12
⊢ ∅ =
(Base‘∅) |
19 | 17, 18 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) →
(Base‘(𝑅
↾s 𝐴)) =
∅) |
20 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(𝑅
↾s 𝐴)) =
(Base‘(𝑅
↾s 𝐴)) |
21 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(1r‘(𝑅 ↾s 𝐴)) = (1r‘(𝑅 ↾s 𝐴)) |
22 | 20, 21 | ringidcl 19722 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ↾s 𝐴) ∈ Ring →
(1r‘(𝑅
↾s 𝐴))
∈ (Base‘(𝑅
↾s 𝐴))) |
23 | 22 | ne0d 4266 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ↾s 𝐴) ∈ Ring →
(Base‘(𝑅
↾s 𝐴))
≠ ∅) |
24 | 23 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) →
(Base‘(𝑅
↾s 𝐴))
≠ ∅) |
25 | 24 | neneqd 2947 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → ¬
(Base‘(𝑅
↾s 𝐴)) =
∅) |
26 | 19, 25 | condan 814 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → 𝐴 ∈ V) |
27 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) |
28 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
29 | 27, 28 | ressbas 16873 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑅)) = (Base‘(𝑅 ↾s 𝐴))) |
30 | | inss2 4160 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ (Base‘𝑅)) ⊆ (Base‘𝑅) |
31 | 29, 30 | eqsstrrdi 3972 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V →
(Base‘(𝑅
↾s 𝐴))
⊆ (Base‘𝑅)) |
32 | 26, 31 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) →
(Base‘(𝑅
↾s 𝐴))
⊆ (Base‘𝑅)) |
33 | 32 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (Base‘(𝑅 ↾s 𝐴)) ⊆ (Base‘𝑅)) |
34 | | simpllr 772 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) |
35 | 33, 34 | sseldd 3918 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → 𝑎 ∈ (Base‘𝑅)) |
36 | | simprl 767 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎) |
37 | | orngring 31401 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
38 | | ringgrp 19703 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ oRing → 𝑅 ∈ Grp) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → 𝑅 ∈ Grp) |
41 | 28 | ressinbas 16881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ V → (𝑅 ↾s 𝐴) = (𝑅 ↾s (𝐴 ∩ (Base‘𝑅)))) |
42 | 29 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ V → (𝑅 ↾s (𝐴 ∩ (Base‘𝑅))) = (𝑅 ↾s (Base‘(𝑅 ↾s 𝐴)))) |
43 | 41, 42 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ V → (𝑅 ↾s 𝐴) = (𝑅 ↾s (Base‘(𝑅 ↾s 𝐴)))) |
44 | 26, 43 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) = (𝑅 ↾s (Base‘(𝑅 ↾s 𝐴)))) |
45 | 44, 3 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s
(Base‘(𝑅
↾s 𝐴)))
∈ Grp) |
46 | 28 | issubg 18670 |
. . . . . . . . . . . . . 14
⊢
((Base‘(𝑅
↾s 𝐴))
∈ (SubGrp‘𝑅)
↔ (𝑅 ∈ Grp ∧
(Base‘(𝑅
↾s 𝐴))
⊆ (Base‘𝑅)
∧ (𝑅
↾s (Base‘(𝑅 ↾s 𝐴))) ∈ Grp)) |
47 | 40, 32, 45, 46 | syl3anbrc 1341 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) →
(Base‘(𝑅
↾s 𝐴))
∈ (SubGrp‘𝑅)) |
48 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ↾s
(Base‘(𝑅
↾s 𝐴))) =
(𝑅 ↾s
(Base‘(𝑅
↾s 𝐴))) |
49 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑅) = (0g‘𝑅) |
50 | 48, 49 | subg0 18676 |
. . . . . . . . . . . . 13
⊢
((Base‘(𝑅
↾s 𝐴))
∈ (SubGrp‘𝑅)
→ (0g‘𝑅) = (0g‘(𝑅 ↾s (Base‘(𝑅 ↾s 𝐴))))) |
51 | 47, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) →
(0g‘𝑅) =
(0g‘(𝑅
↾s (Base‘(𝑅 ↾s 𝐴))))) |
52 | 44 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) →
(0g‘(𝑅
↾s 𝐴)) =
(0g‘(𝑅
↾s (Base‘(𝑅 ↾s 𝐴))))) |
53 | 51, 52 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) →
(0g‘𝑅) =
(0g‘(𝑅
↾s 𝐴))) |
54 | 53 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → (0g‘𝑅) = (0g‘(𝑅 ↾s 𝐴))) |
55 | 26 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → 𝐴 ∈ V) |
56 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(le‘𝑅) =
(le‘𝑅) |
57 | 27, 56 | ressle 17013 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (le‘𝑅) = (le‘(𝑅 ↾s 𝐴))) |
58 | 55, 57 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → (le‘𝑅) = (le‘(𝑅 ↾s 𝐴))) |
59 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → 𝑎 = 𝑎) |
60 | 54, 58, 59 | breq123d 5084 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → ((0g‘𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎)) |
61 | 60 | adantr 480 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → ((0g‘𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎)) |
62 | 36, 61 | mpbird 256 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (0g‘𝑅)(le‘𝑅)𝑎) |
63 | | simplr 765 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) |
64 | 33, 63 | sseldd 3918 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → 𝑏 ∈ (Base‘𝑅)) |
65 | | simprr 769 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏) |
66 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → 𝑏 = 𝑏) |
67 | 54, 58, 66 | breq123d 5084 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → ((0g‘𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) |
68 | 67 | adantr 480 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → ((0g‘𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) |
69 | 65, 68 | mpbird 256 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (0g‘𝑅)(le‘𝑅)𝑏) |
70 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
71 | 28, 56, 49, 70 | orngmul 31404 |
. . . . . . 7
⊢ ((𝑅 ∈ oRing ∧ (𝑎 ∈ (Base‘𝑅) ∧
(0g‘𝑅)(le‘𝑅)𝑎) ∧ (𝑏 ∈ (Base‘𝑅) ∧ (0g‘𝑅)(le‘𝑅)𝑏)) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)) |
72 | 13, 35, 62, 64, 69, 71 | syl122anc 1377 |
. . . . . 6
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)) |
73 | 54 | adantr 480 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (0g‘𝑅) = (0g‘(𝑅 ↾s 𝐴))) |
74 | 58 | adantr 480 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (le‘𝑅) = (le‘(𝑅 ↾s 𝐴))) |
75 | 55 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → 𝐴 ∈ V) |
76 | 27, 70 | ressmulr 16943 |
. . . . . . . . 9
⊢ (𝐴 ∈ V →
(.r‘𝑅) =
(.r‘(𝑅
↾s 𝐴))) |
77 | 75, 76 | syl 17 |
. . . . . . . 8
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (.r‘𝑅) = (.r‘(𝑅 ↾s 𝐴))) |
78 | 77 | oveqd 7272 |
. . . . . . 7
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (𝑎(.r‘𝑅)𝑏) = (𝑎(.r‘(𝑅 ↾s 𝐴))𝑏)) |
79 | 73, 74, 78 | breq123d 5084 |
. . . . . 6
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → ((0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏) ↔ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))(𝑎(.r‘(𝑅 ↾s 𝐴))𝑏))) |
80 | 72, 79 | mpbid 231 |
. . . . 5
⊢
(((((𝑅 ∈ oRing
∧ (𝑅
↾s 𝐴)
∈ Ring) ∧ 𝑎 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ 𝑏 ∈
(Base‘(𝑅
↾s 𝐴)))
∧ ((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏)) → (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))(𝑎(.r‘(𝑅 ↾s 𝐴))𝑏)) |
81 | 80 | ex 412 |
. . . 4
⊢ ((((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅 ↾s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))) → (((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏) → (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))(𝑎(.r‘(𝑅 ↾s 𝐴))𝑏))) |
82 | 81 | anasss 466 |
. . 3
⊢ (((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝑎 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝐴)))) → (((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏) → (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))(𝑎(.r‘(𝑅 ↾s 𝐴))𝑏))) |
83 | 82 | ralrimivva 3114 |
. 2
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) →
∀𝑎 ∈
(Base‘(𝑅
↾s 𝐴))∀𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))(((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏) → (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))(𝑎(.r‘(𝑅 ↾s 𝐴))𝑏))) |
84 | | eqid 2738 |
. . 3
⊢
(0g‘(𝑅 ↾s 𝐴)) = (0g‘(𝑅 ↾s 𝐴)) |
85 | | eqid 2738 |
. . 3
⊢
(.r‘(𝑅 ↾s 𝐴)) = (.r‘(𝑅 ↾s 𝐴)) |
86 | | eqid 2738 |
. . 3
⊢
(le‘(𝑅
↾s 𝐴)) =
(le‘(𝑅
↾s 𝐴)) |
87 | 20, 84, 85, 86 | isorng 31400 |
. 2
⊢ ((𝑅 ↾s 𝐴) ∈ oRing ↔ ((𝑅 ↾s 𝐴) ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ oGrp ∧
∀𝑎 ∈
(Base‘(𝑅
↾s 𝐴))∀𝑏 ∈ (Base‘(𝑅 ↾s 𝐴))(((0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑎 ∧ (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))𝑏) → (0g‘(𝑅 ↾s 𝐴))(le‘(𝑅 ↾s 𝐴))(𝑎(.r‘(𝑅 ↾s 𝐴))𝑏)))) |
88 | 1, 12, 83, 87 | syl3anbrc 1341 |
1
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oRing) |