Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suborng Structured version   Visualization version   GIF version

Theorem suborng 30361
Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
suborng ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oRing)

Proof of Theorem suborng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ Ring)
2 ringgrp 18907 . . . 4 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
32adantl 475 . . 3 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ Grp)
4 orngogrp 30347 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
5 isogrp 30248 . . . . . 6 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
65simprbi 492 . . . . 5 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
74, 6syl 17 . . . 4 (𝑅 ∈ oRing → 𝑅 ∈ oMnd)
8 ringmnd 18911 . . . 4 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Mnd)
9 submomnd 30256 . . . 4 ((𝑅 ∈ oMnd ∧ (𝑅s 𝐴) ∈ Mnd) → (𝑅s 𝐴) ∈ oMnd)
107, 8, 9syl2an 591 . . 3 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oMnd)
11 isogrp 30248 . . 3 ((𝑅s 𝐴) ∈ oGrp ↔ ((𝑅s 𝐴) ∈ Grp ∧ (𝑅s 𝐴) ∈ oMnd))
123, 10, 11sylanbrc 580 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oGrp)
13 simp-4l 803 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑅 ∈ oRing)
14 reldmress 16290 . . . . . . . . . . . . . . 15 Rel dom ↾s
1514ovprc2 6945 . . . . . . . . . . . . . 14 𝐴 ∈ V → (𝑅s 𝐴) = ∅)
1615fveq2d 6438 . . . . . . . . . . . . 13 𝐴 ∈ V → (Base‘(𝑅s 𝐴)) = (Base‘∅))
1716adantl 475 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) = (Base‘∅))
18 base0 16276 . . . . . . . . . . . 12 ∅ = (Base‘∅)
1917, 18syl6eqr 2880 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) = ∅)
20 eqid 2826 . . . . . . . . . . . . . . 15 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
21 eqid 2826 . . . . . . . . . . . . . . 15 (1r‘(𝑅s 𝐴)) = (1r‘(𝑅s 𝐴))
2220, 21ringidcl 18923 . . . . . . . . . . . . . 14 ((𝑅s 𝐴) ∈ Ring → (1r‘(𝑅s 𝐴)) ∈ (Base‘(𝑅s 𝐴)))
2322ne0d 4152 . . . . . . . . . . . . 13 ((𝑅s 𝐴) ∈ Ring → (Base‘(𝑅s 𝐴)) ≠ ∅)
2423ad2antlr 720 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) ≠ ∅)
2524neneqd 3005 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → ¬ (Base‘(𝑅s 𝐴)) = ∅)
2619, 25condan 854 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → 𝐴 ∈ V)
27 eqid 2826 . . . . . . . . . . . 12 (𝑅s 𝐴) = (𝑅s 𝐴)
28 eqid 2826 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2927, 28ressbas 16294 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝐴)))
30 inss2 4059 . . . . . . . . . . 11 (𝐴 ∩ (Base‘𝑅)) ⊆ (Base‘𝑅)
3129, 30syl6eqssr 3882 . . . . . . . . . 10 (𝐴 ∈ V → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
3226, 31syl 17 . . . . . . . . 9 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
3332ad3antrrr 723 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
34 simpllr 795 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑎 ∈ (Base‘(𝑅s 𝐴)))
3533, 34sseldd 3829 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑎 ∈ (Base‘𝑅))
36 simprl 789 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎)
37 orngring 30346 . . . . . . . . . . . . . . . 16 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
38 ringgrp 18907 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ oRing → 𝑅 ∈ Grp)
4039adantr 474 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → 𝑅 ∈ Grp)
4128ressinbas 16300 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝑅s 𝐴) = (𝑅s (𝐴 ∩ (Base‘𝑅))))
4229oveq2d 6922 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝑅s (𝐴 ∩ (Base‘𝑅))) = (𝑅s (Base‘(𝑅s 𝐴))))
4341, 42eqtrd 2862 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → (𝑅s 𝐴) = (𝑅s (Base‘(𝑅s 𝐴))))
4426, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) = (𝑅s (Base‘(𝑅s 𝐴))))
4544, 3eqeltrrd 2908 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s (Base‘(𝑅s 𝐴))) ∈ Grp)
4628issubg 17946 . . . . . . . . . . . . . 14 ((Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅) ∧ (𝑅s (Base‘(𝑅s 𝐴))) ∈ Grp))
4740, 32, 45, 46syl3anbrc 1449 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅))
48 eqid 2826 . . . . . . . . . . . . . 14 (𝑅s (Base‘(𝑅s 𝐴))) = (𝑅s (Base‘(𝑅s 𝐴)))
49 eqid 2826 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5048, 49subg0 17952 . . . . . . . . . . . . 13 ((Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5147, 50syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g𝑅) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5244fveq2d 6438 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5351, 52eqtr4d 2865 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
5453ad2antrr 719 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
5526ad2antrr 719 . . . . . . . . . . 11 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝐴 ∈ V)
56 eqid 2826 . . . . . . . . . . . 12 (le‘𝑅) = (le‘𝑅)
5727, 56ressle 16413 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝑅) = (le‘(𝑅s 𝐴)))
5855, 57syl 17 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (le‘𝑅) = (le‘(𝑅s 𝐴)))
59 eqidd 2827 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝑎 = 𝑎)
6054, 58, 59breq123d 4888 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → ((0g𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎))
6160adantr 474 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎))
6236, 61mpbird 249 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)𝑎)
63 simplr 787 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑏 ∈ (Base‘(𝑅s 𝐴)))
6433, 63sseldd 3829 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑏 ∈ (Base‘𝑅))
65 simprr 791 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)
66 eqidd 2827 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝑏 = 𝑏)
6754, 58, 66breq123d 4888 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → ((0g𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏))
6867adantr 474 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏))
6965, 68mpbird 249 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)𝑏)
70 eqid 2826 . . . . . . . 8 (.r𝑅) = (.r𝑅)
7128, 56, 49, 70orngmul 30349 . . . . . . 7 ((𝑅 ∈ oRing ∧ (𝑎 ∈ (Base‘𝑅) ∧ (0g𝑅)(le‘𝑅)𝑎) ∧ (𝑏 ∈ (Base‘𝑅) ∧ (0g𝑅)(le‘𝑅)𝑏)) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))
7213, 35, 62, 64, 69, 71syl122anc 1504 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))
7354adantr 474 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
7458adantr 474 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (le‘𝑅) = (le‘(𝑅s 𝐴)))
7555adantr 474 . . . . . . . . 9 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝐴 ∈ V)
7627, 70ressmulr 16366 . . . . . . . . 9 (𝐴 ∈ V → (.r𝑅) = (.r‘(𝑅s 𝐴)))
7775, 76syl 17 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (.r𝑅) = (.r‘(𝑅s 𝐴)))
7877oveqd 6923 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (𝑎(.r𝑅)𝑏) = (𝑎(.r‘(𝑅s 𝐴))𝑏))
7973, 74, 78breq123d 4888 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏) ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8072, 79mpbid 224 . . . . 5 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏))
8180ex 403 . . . 4 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8281anasss 460 . . 3 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝑎 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴)))) → (((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8382ralrimivva 3181 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → ∀𝑎 ∈ (Base‘(𝑅s 𝐴))∀𝑏 ∈ (Base‘(𝑅s 𝐴))(((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
84 eqid 2826 . . 3 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
85 eqid 2826 . . 3 (.r‘(𝑅s 𝐴)) = (.r‘(𝑅s 𝐴))
86 eqid 2826 . . 3 (le‘(𝑅s 𝐴)) = (le‘(𝑅s 𝐴))
8720, 84, 85, 86isorng 30345 . 2 ((𝑅s 𝐴) ∈ oRing ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝑅s 𝐴) ∈ oGrp ∧ ∀𝑎 ∈ (Base‘(𝑅s 𝐴))∀𝑏 ∈ (Base‘(𝑅s 𝐴))(((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏))))
881, 12, 83, 87syl3anbrc 1449 1 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 3000  wral 3118  Vcvv 3415  cin 3798  wss 3799  c0 4145   class class class wbr 4874  cfv 6124  (class class class)co 6906  Basecbs 16223  s cress 16224  .rcmulr 16307  lecple 16313  0gc0g 16454  Mndcmnd 17648  Grpcgrp 17777  SubGrpcsubg 17940  1rcur 18856  Ringcrg 18902  oMndcomnd 30243  oGrpcogrp 30244  oRingcorng 30341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-dec 11823  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-ple 16326  df-0g 16456  df-poset 17300  df-toset 17388  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-grp 17780  df-subg 17943  df-mgp 18845  df-ur 18857  df-ring 18904  df-omnd 30245  df-ogrp 30246  df-orng 30343
This theorem is referenced by:  subofld  30362
  Copyright terms: Public domain W3C validator