Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suborng Structured version   Visualization version   GIF version

Theorem suborng 33337
Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
suborng ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oRing)

Proof of Theorem suborng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ Ring)
2 ringgrp 20198 . . . 4 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
32adantl 481 . . 3 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ Grp)
4 orngogrp 33323 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
5 isogrp 33070 . . . . . 6 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
65simprbi 496 . . . . 5 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
74, 6syl 17 . . . 4 (𝑅 ∈ oRing → 𝑅 ∈ oMnd)
8 ringmnd 20203 . . . 4 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Mnd)
9 submomnd 33078 . . . 4 ((𝑅 ∈ oMnd ∧ (𝑅s 𝐴) ∈ Mnd) → (𝑅s 𝐴) ∈ oMnd)
107, 8, 9syl2an 596 . . 3 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oMnd)
11 isogrp 33070 . . 3 ((𝑅s 𝐴) ∈ oGrp ↔ ((𝑅s 𝐴) ∈ Grp ∧ (𝑅s 𝐴) ∈ oMnd))
123, 10, 11sylanbrc 583 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oGrp)
13 simp-4l 782 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑅 ∈ oRing)
14 reldmress 17253 . . . . . . . . . . . . . . 15 Rel dom ↾s
1514ovprc2 7445 . . . . . . . . . . . . . 14 𝐴 ∈ V → (𝑅s 𝐴) = ∅)
1615fveq2d 6880 . . . . . . . . . . . . 13 𝐴 ∈ V → (Base‘(𝑅s 𝐴)) = (Base‘∅))
1716adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) = (Base‘∅))
18 base0 17233 . . . . . . . . . . . 12 ∅ = (Base‘∅)
1917, 18eqtr4di 2788 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) = ∅)
20 eqid 2735 . . . . . . . . . . . . . . 15 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
21 eqid 2735 . . . . . . . . . . . . . . 15 (1r‘(𝑅s 𝐴)) = (1r‘(𝑅s 𝐴))
2220, 21ringidcl 20225 . . . . . . . . . . . . . 14 ((𝑅s 𝐴) ∈ Ring → (1r‘(𝑅s 𝐴)) ∈ (Base‘(𝑅s 𝐴)))
2322ne0d 4317 . . . . . . . . . . . . 13 ((𝑅s 𝐴) ∈ Ring → (Base‘(𝑅s 𝐴)) ≠ ∅)
2423ad2antlr 727 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑅s 𝐴)) ≠ ∅)
2524neneqd 2937 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ ¬ 𝐴 ∈ V) → ¬ (Base‘(𝑅s 𝐴)) = ∅)
2619, 25condan 817 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → 𝐴 ∈ V)
27 eqid 2735 . . . . . . . . . . . 12 (𝑅s 𝐴) = (𝑅s 𝐴)
28 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
2927, 28ressbas 17257 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝐴)))
30 inss2 4213 . . . . . . . . . . 11 (𝐴 ∩ (Base‘𝑅)) ⊆ (Base‘𝑅)
3129, 30eqsstrrdi 4004 . . . . . . . . . 10 (𝐴 ∈ V → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
3226, 31syl 17 . . . . . . . . 9 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
3332ad3antrrr 730 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
34 simpllr 775 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑎 ∈ (Base‘(𝑅s 𝐴)))
3533, 34sseldd 3959 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑎 ∈ (Base‘𝑅))
36 simprl 770 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎)
37 orngring 33322 . . . . . . . . . . . . . . . 16 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
38 ringgrp 20198 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ oRing → 𝑅 ∈ Grp)
4039adantr 480 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → 𝑅 ∈ Grp)
4128ressinbas 17266 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝑅s 𝐴) = (𝑅s (𝐴 ∩ (Base‘𝑅))))
4229oveq2d 7421 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝑅s (𝐴 ∩ (Base‘𝑅))) = (𝑅s (Base‘(𝑅s 𝐴))))
4341, 42eqtrd 2770 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → (𝑅s 𝐴) = (𝑅s (Base‘(𝑅s 𝐴))))
4426, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) = (𝑅s (Base‘(𝑅s 𝐴))))
4544, 3eqeltrrd 2835 . . . . . . . . . . . . . 14 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s (Base‘(𝑅s 𝐴))) ∈ Grp)
4628issubg 19109 . . . . . . . . . . . . . 14 ((Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅) ∧ (𝑅s (Base‘(𝑅s 𝐴))) ∈ Grp))
4740, 32, 45, 46syl3anbrc 1344 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅))
48 eqid 2735 . . . . . . . . . . . . . 14 (𝑅s (Base‘(𝑅s 𝐴))) = (𝑅s (Base‘(𝑅s 𝐴)))
49 eqid 2735 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5048, 49subg0 19115 . . . . . . . . . . . . 13 ((Base‘(𝑅s 𝐴)) ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5147, 50syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g𝑅) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5244fveq2d 6880 . . . . . . . . . . . 12 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s (Base‘(𝑅s 𝐴)))))
5351, 52eqtr4d 2773 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
5453ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
5526ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝐴 ∈ V)
56 eqid 2735 . . . . . . . . . . . 12 (le‘𝑅) = (le‘𝑅)
5727, 56ressle 17394 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝑅) = (le‘(𝑅s 𝐴)))
5855, 57syl 17 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (le‘𝑅) = (le‘(𝑅s 𝐴)))
59 eqidd 2736 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝑎 = 𝑎)
6054, 58, 59breq123d 5133 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → ((0g𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎))
6160adantr 480 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)𝑎 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎))
6236, 61mpbird 257 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)𝑎)
63 simplr 768 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑏 ∈ (Base‘(𝑅s 𝐴)))
6433, 63sseldd 3959 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝑏 ∈ (Base‘𝑅))
65 simprr 772 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)
66 eqidd 2736 . . . . . . . . . 10 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → 𝑏 = 𝑏)
6754, 58, 66breq123d 5133 . . . . . . . . 9 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → ((0g𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏))
6867adantr 480 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)𝑏 ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏))
6965, 68mpbird 257 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)𝑏)
70 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
7128, 56, 49, 70orngmul 33325 . . . . . . 7 ((𝑅 ∈ oRing ∧ (𝑎 ∈ (Base‘𝑅) ∧ (0g𝑅)(le‘𝑅)𝑎) ∧ (𝑏 ∈ (Base‘𝑅) ∧ (0g𝑅)(le‘𝑅)𝑏)) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))
7213, 35, 62, 64, 69, 71syl122anc 1381 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))
7354adantr 480 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g𝑅) = (0g‘(𝑅s 𝐴)))
7458adantr 480 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (le‘𝑅) = (le‘(𝑅s 𝐴)))
7555adantr 480 . . . . . . . . 9 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → 𝐴 ∈ V)
7627, 70ressmulr 17321 . . . . . . . . 9 (𝐴 ∈ V → (.r𝑅) = (.r‘(𝑅s 𝐴)))
7775, 76syl 17 . . . . . . . 8 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (.r𝑅) = (.r‘(𝑅s 𝐴)))
7877oveqd 7422 . . . . . . 7 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (𝑎(.r𝑅)𝑏) = (𝑎(.r‘(𝑅s 𝐴))𝑏))
7973, 74, 78breq123d 5133 . . . . . 6 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → ((0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏) ↔ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8072, 79mpbid 232 . . . . 5 (((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) ∧ ((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏)) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏))
8180ex 412 . . . 4 ((((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ 𝑎 ∈ (Base‘(𝑅s 𝐴))) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴))) → (((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8281anasss 466 . . 3 (((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝑎 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑅s 𝐴)))) → (((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
8382ralrimivva 3187 . 2 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → ∀𝑎 ∈ (Base‘(𝑅s 𝐴))∀𝑏 ∈ (Base‘(𝑅s 𝐴))(((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏)))
84 eqid 2735 . . 3 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
85 eqid 2735 . . 3 (.r‘(𝑅s 𝐴)) = (.r‘(𝑅s 𝐴))
86 eqid 2735 . . 3 (le‘(𝑅s 𝐴)) = (le‘(𝑅s 𝐴))
8720, 84, 85, 86isorng 33321 . 2 ((𝑅s 𝐴) ∈ oRing ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝑅s 𝐴) ∈ oGrp ∧ ∀𝑎 ∈ (Base‘(𝑅s 𝐴))∀𝑏 ∈ (Base‘(𝑅s 𝐴))(((0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑎 ∧ (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))𝑏) → (0g‘(𝑅s 𝐴))(le‘(𝑅s 𝐴))(𝑎(.r‘(𝑅s 𝐴))𝑏))))
881, 12, 83, 87syl3anbrc 1344 1 ((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  .rcmulr 17272  lecple 17278  0gc0g 17453  Mndcmnd 18712  Grpcgrp 18916  SubGrpcsubg 19103  1rcur 20141  Ringcrg 20193  oMndcomnd 33065  oGrpcogrp 33066  oRingcorng 33317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-dec 12709  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-ple 17291  df-0g 17455  df-poset 18325  df-toset 18427  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-subg 19106  df-mgp 20101  df-ur 20142  df-ring 20195  df-omnd 33067  df-ogrp 33068  df-orng 33319
This theorem is referenced by:  subofld  33338
  Copyright terms: Public domain W3C validator