Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabl Structured version   Visualization version   GIF version

Theorem archiabl 33167
Description: Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
archiabl ((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel)

Proof of Theorem archiabl
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . . 5 (0g𝑊) = (0g𝑊)
3 eqid 2729 . . . . 5 (le‘𝑊) = (le‘𝑊)
4 eqid 2729 . . . . 5 (lt‘𝑊) = (lt‘𝑊)
5 eqid 2729 . . . . 5 (.g𝑊) = (.g𝑊)
6 simpll1 1213 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp)
7 simpll3 1215 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Archi)
8 simplr 768 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑣 ∈ (Base‘𝑊))
9 simprl 770 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → (0g𝑊)(lt‘𝑊)𝑣)
10 simp2 1137 . . . . . 6 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → 𝑦 ∈ (Base‘𝑊))
11 simp1rr 1240 . . . . . 6 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))
12 simp3 1138 . . . . . 6 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → (0g𝑊)(lt‘𝑊)𝑦)
13 breq2 5106 . . . . . . . 8 (𝑥 = 𝑦 → ((0g𝑊)(lt‘𝑊)𝑥 ↔ (0g𝑊)(lt‘𝑊)𝑦))
14 breq2 5106 . . . . . . . 8 (𝑥 = 𝑦 → (𝑣(le‘𝑊)𝑥𝑣(le‘𝑊)𝑦))
1513, 14imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → (((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑦𝑣(le‘𝑊)𝑦)))
1615rspcv 3581 . . . . . 6 (𝑦 ∈ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥) → ((0g𝑊)(lt‘𝑊)𝑦𝑣(le‘𝑊)𝑦)))
1710, 11, 12, 16syl3c 66 . . . . 5 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → 𝑣(le‘𝑊)𝑦)
181, 2, 3, 4, 5, 6, 7, 8, 9, 17archiabllem1 33162 . . . 4 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
1918adantllr 719 . . 3 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
20 simpr 484 . . . 4 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
21 breq2 5106 . . . . . 6 (𝑢 = 𝑣 → ((0g𝑊)(lt‘𝑊)𝑢 ↔ (0g𝑊)(lt‘𝑊)𝑣))
22 breq1 5105 . . . . . . . 8 (𝑢 = 𝑣 → (𝑢(le‘𝑊)𝑥𝑣(le‘𝑊)𝑥))
2322imbi2d 340 . . . . . . 7 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2423ralbidv 3156 . . . . . 6 (𝑢 = 𝑣 → (∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥) ↔ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2521, 24anbi12d 632 . . . . 5 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))))
2625cbvrexvw 3214 . . . 4 (∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ∃𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2720, 26sylib 218 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∃𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2819, 27r19.29a 3141 . 2 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
29 simpl1 1192 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp)
30 simpl3 1194 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Archi)
31 eqid 2729 . . 3 (+g𝑊) = (+g𝑊)
32 simpl2 1193 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → (oppg𝑊) ∈ oGrp)
33 simpr 484 . . . . . . . . . 10 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
34 ralnex 3055 . . . . . . . . . 10 (∀𝑢 ∈ (Base‘𝑊) ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
3533, 34sylibr 234 . . . . . . . . 9 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
36 rexanali 3084 . . . . . . . . . . . 12 (∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))
3736imbi2i 336 . . . . . . . . . . 11 (((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
38 imnan 399 . . . . . . . . . . 11 (((0g𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
3937, 38bitri 275 . . . . . . . . . 10 (((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
4039ralbii 3075 . . . . . . . . 9 (∀𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
4135, 40sylibr 234 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)))
4222notbid 318 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (¬ 𝑢(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑥))
4342anbi2d 630 . . . . . . . . . . 11 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4443rexbidv 3157 . . . . . . . . . 10 (𝑢 = 𝑣 → (∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4521, 44imbi12d 344 . . . . . . . . 9 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))))
4645cbvralvw 3213 . . . . . . . 8 (∀𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4741, 46sylib 218 . . . . . . 7 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∀𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4847r19.21bi 3227 . . . . . 6 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4914notbid 318 . . . . . . . 8 (𝑥 = 𝑦 → (¬ 𝑣(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑦))
5013, 49anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → (((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)))
5150cbvrexvw 3214 . . . . . 6 (∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))
5248, 51imbitrdi 251 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)))
53523impia 1117 . . . 4 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))
54 simp1l1 1267 . . . . . 6 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ oGrp)
55 isogrp 20038 . . . . . . 7 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
5655simprbi 496 . . . . . 6 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
57 omndtos 20041 . . . . . 6 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
5854, 56, 573syl 18 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ Toset)
59 simp2 1137 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → 𝑣 ∈ (Base‘𝑊))
601, 3, 4tltnle 18361 . . . . . . . . . 10 ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑦(lt‘𝑊)𝑣 ↔ ¬ 𝑣(le‘𝑊)𝑦))
6160bicomd 223 . . . . . . . . 9 ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
62613com23 1126 . . . . . . . 8 ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
63623expa 1118 . . . . . . 7 (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
6463anbi2d 630 . . . . . 6 (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣)))
6564rexbidva 3155 . . . . 5 ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) → (∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣)))
6658, 59, 65syl2anc 584 . . . 4 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → (∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣)))
6753, 66mpbid 232 . . 3 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
681, 2, 3, 4, 5, 29, 30, 31, 32, 67archiabllem2 33166 . 2 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
6928, 68pm2.61dan 812 1 ((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  Basecbs 17155  +gcplusg 17196  lecple 17203  0gc0g 17378  ltcplt 18249  Tosetctos 18355  Grpcgrp 18847  .gcmg 18981  oppgcoppg 19259  Abelcabl 19695  oMndcomnd 20033  oGrpcogrp 20034  Archicarchi 33146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-seq 13943  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-ple 17216  df-0g 17380  df-proset 18235  df-poset 18254  df-plt 18269  df-toset 18356  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-oppg 19260  df-cmn 19696  df-abl 19697  df-omnd 20035  df-ogrp 20036  df-inftm 33147  df-archi 33148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator