| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 2 | | eqid 2734 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 3 | | eqid 2734 |
. . . . 5
⊢
(le‘𝑊) =
(le‘𝑊) |
| 4 | | eqid 2734 |
. . . . 5
⊢
(lt‘𝑊) =
(lt‘𝑊) |
| 5 | | eqid 2734 |
. . . . 5
⊢
(.g‘𝑊) = (.g‘𝑊) |
| 6 | | simpll1 1212 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp) |
| 7 | | simpll3 1214 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Archi) |
| 8 | | simplr 768 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑣 ∈ (Base‘𝑊)) |
| 9 | | simprl 770 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → (0g‘𝑊)(lt‘𝑊)𝑣) |
| 10 | | simp2 1137 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → 𝑦 ∈ (Base‘𝑊)) |
| 11 | | simp1rr 1239 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥)) |
| 12 | | simp3 1138 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → (0g‘𝑊)(lt‘𝑊)𝑦) |
| 13 | | breq2 5129 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((0g‘𝑊)(lt‘𝑊)𝑥 ↔ (0g‘𝑊)(lt‘𝑊)𝑦)) |
| 14 | | breq2 5129 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑣(le‘𝑊)𝑥 ↔ 𝑣(le‘𝑊)𝑦)) |
| 15 | 13, 14 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑦 → 𝑣(le‘𝑊)𝑦))) |
| 16 | 15 | rspcv 3602 |
. . . . . 6
⊢ (𝑦 ∈ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥) → ((0g‘𝑊)(lt‘𝑊)𝑦 → 𝑣(le‘𝑊)𝑦))) |
| 17 | 10, 11, 12, 16 | syl3c 66 |
. . . . 5
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → 𝑣(le‘𝑊)𝑦) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 17 | archiabllem1 33146 |
. . . 4
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
| 19 | 18 | adantllr 719 |
. . 3
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
| 20 | | simpr 484 |
. . . 4
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 21 | | breq2 5129 |
. . . . . 6
⊢ (𝑢 = 𝑣 → ((0g‘𝑊)(lt‘𝑊)𝑢 ↔ (0g‘𝑊)(lt‘𝑊)𝑣)) |
| 22 | | breq1 5128 |
. . . . . . . 8
⊢ (𝑢 = 𝑣 → (𝑢(le‘𝑊)𝑥 ↔ 𝑣(le‘𝑊)𝑥)) |
| 23 | 22 | imbi2d 340 |
. . . . . . 7
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
| 24 | 23 | ralbidv 3165 |
. . . . . 6
⊢ (𝑢 = 𝑣 → (∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥) ↔ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
| 25 | 21, 24 | anbi12d 632 |
. . . . 5
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥)))) |
| 26 | 25 | cbvrexvw 3225 |
. . . 4
⊢
(∃𝑢 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ∃𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
| 27 | 20, 26 | sylib 218 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∃𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
| 28 | 19, 27 | r19.29a 3149 |
. 2
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
| 29 | | simpl1 1191 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp) |
| 30 | | simpl3 1193 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Archi) |
| 31 | | eqid 2734 |
. . 3
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 32 | | simpl2 1192 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) →
(oppg‘𝑊) ∈ oGrp) |
| 33 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 34 | | ralnex 3061 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
(Base‘𝑊) ¬
((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 35 | 33, 34 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 36 | | rexanali 3090 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) |
| 37 | 36 | imbi2i 336 |
. . . . . . . . . . 11
⊢
(((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g‘𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 38 | | imnan 399 |
. . . . . . . . . . 11
⊢
(((0g‘𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 39 | 37, 38 | bitri 275 |
. . . . . . . . . 10
⊢
(((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 40 | 39 | ralbii 3081 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
| 41 | 35, 40 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥))) |
| 42 | 22 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (¬ 𝑢(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑥)) |
| 43 | 42 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
| 44 | 43 | rexbidv 3166 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
| 45 | 21, 44 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))) |
| 46 | 45 | cbvralvw 3224 |
. . . . . . . 8
⊢
(∀𝑢 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
| 47 | 41, 46 | sylib 218 |
. . . . . . 7
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∀𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
| 48 | 47 | r19.21bi 3238 |
. . . . . 6
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
| 49 | 14 | notbid 318 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (¬ 𝑣(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑦)) |
| 50 | 13, 49 | anbi12d 632 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))) |
| 51 | 50 | cbvrexvw 3225 |
. . . . . 6
⊢
(∃𝑥 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)) |
| 52 | 48, 51 | imbitrdi 251 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))) |
| 53 | 52 | 3impia 1117 |
. . . 4
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)) |
| 54 | | simp1l1 1266 |
. . . . . 6
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ oGrp) |
| 55 | | isogrp 33025 |
. . . . . . 7
⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) |
| 56 | 55 | simprbi 496 |
. . . . . 6
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
| 57 | | omndtos 33028 |
. . . . . 6
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) |
| 58 | 54, 56, 57 | 3syl 18 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ Toset) |
| 59 | | simp2 1137 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → 𝑣 ∈ (Base‘𝑊)) |
| 60 | 1, 3, 4 | tltnle 18441 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑦(lt‘𝑊)𝑣 ↔ ¬ 𝑣(le‘𝑊)𝑦)) |
| 61 | 60 | bicomd 223 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦 ↔ 𝑦(lt‘𝑊)𝑣)) |
| 62 | 61 | 3com23 1126 |
. . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦 ↔ 𝑦(lt‘𝑊)𝑣)) |
| 63 | 62 | 3expa 1118 |
. . . . . . 7
⊢ (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦 ↔ 𝑦(lt‘𝑊)𝑣)) |
| 64 | 63 | anbi2d 630 |
. . . . . 6
⊢ (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣))) |
| 65 | 64 | rexbidva 3164 |
. . . . 5
⊢ ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) → (∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣))) |
| 66 | 58, 59, 65 | syl2anc 584 |
. . . 4
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → (∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣))) |
| 67 | 53, 66 | mpbid 232 |
. . 3
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣)) |
| 68 | 1, 2, 3, 4, 5, 29,
30, 31, 32, 67 | archiabllem2 33150 |
. 2
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
| 69 | 28, 68 | pm2.61dan 812 |
1
⊢ ((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel) |