Step | Hyp | Ref
| Expression |
1 | | eqid 2739 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
2 | | eqid 2739 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
3 | | eqid 2739 |
. . . . 5
⊢
(le‘𝑊) =
(le‘𝑊) |
4 | | eqid 2739 |
. . . . 5
⊢
(lt‘𝑊) =
(lt‘𝑊) |
5 | | eqid 2739 |
. . . . 5
⊢
(.g‘𝑊) = (.g‘𝑊) |
6 | | simpll1 1211 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp) |
7 | | simpll3 1213 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Archi) |
8 | | simplr 766 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑣 ∈ (Base‘𝑊)) |
9 | | simprl 768 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → (0g‘𝑊)(lt‘𝑊)𝑣) |
10 | | simp2 1136 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → 𝑦 ∈ (Base‘𝑊)) |
11 | | simp1rr 1238 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥)) |
12 | | simp3 1137 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → (0g‘𝑊)(lt‘𝑊)𝑦) |
13 | | breq2 5079 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((0g‘𝑊)(lt‘𝑊)𝑥 ↔ (0g‘𝑊)(lt‘𝑊)𝑦)) |
14 | | breq2 5079 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑣(le‘𝑊)𝑥 ↔ 𝑣(le‘𝑊)𝑦)) |
15 | 13, 14 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑦 → 𝑣(le‘𝑊)𝑦))) |
16 | 15 | rspcv 3558 |
. . . . . 6
⊢ (𝑦 ∈ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥) → ((0g‘𝑊)(lt‘𝑊)𝑦 → 𝑣(le‘𝑊)𝑦))) |
17 | 10, 11, 12, 16 | syl3c 66 |
. . . . 5
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑦) → 𝑣(le‘𝑊)𝑦) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 17 | archiabllem1 31456 |
. . . 4
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
19 | 18 | adantllr 716 |
. . 3
⊢
(((((𝑊 ∈ oGrp
∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
20 | | simpr 485 |
. . . 4
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
21 | | breq2 5079 |
. . . . . 6
⊢ (𝑢 = 𝑣 → ((0g‘𝑊)(lt‘𝑊)𝑢 ↔ (0g‘𝑊)(lt‘𝑊)𝑣)) |
22 | | breq1 5078 |
. . . . . . . 8
⊢ (𝑢 = 𝑣 → (𝑢(le‘𝑊)𝑥 ↔ 𝑣(le‘𝑊)𝑥)) |
23 | 22 | imbi2d 341 |
. . . . . . 7
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
24 | 23 | ralbidv 3113 |
. . . . . 6
⊢ (𝑢 = 𝑣 → (∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥) ↔ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
25 | 21, 24 | anbi12d 631 |
. . . . 5
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥)))) |
26 | 25 | cbvrexvw 3385 |
. . . 4
⊢
(∃𝑢 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ∃𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
27 | 20, 26 | sylib 217 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∃𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑣(le‘𝑊)𝑥))) |
28 | 19, 27 | r19.29a 3219 |
. 2
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
29 | | simpl1 1190 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp) |
30 | | simpl3 1192 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Archi) |
31 | | eqid 2739 |
. . 3
⊢
(+g‘𝑊) = (+g‘𝑊) |
32 | | simpl2 1191 |
. . 3
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) →
(oppg‘𝑊) ∈ oGrp) |
33 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
34 | | ralnex 3168 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
(Base‘𝑊) ¬
((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
35 | 33, 34 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
36 | | rexanali 3193 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) |
37 | 36 | imbi2i 336 |
. . . . . . . . . . 11
⊢
(((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g‘𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
38 | | imnan 400 |
. . . . . . . . . . 11
⊢
(((0g‘𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
39 | 37, 38 | bitri 274 |
. . . . . . . . . 10
⊢
(((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
40 | 39 | ralbii 3093 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) |
41 | 35, 40 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥))) |
42 | 22 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (¬ 𝑢(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑥)) |
43 | 42 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
44 | 43 | rexbidv 3227 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
45 | 21, 44 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑢 = 𝑣 → (((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))) |
46 | 45 | cbvralvw 3384 |
. . . . . . . 8
⊢
(∀𝑢 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
47 | 41, 46 | sylib 217 |
. . . . . . 7
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → ∀𝑣 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
48 | 47 | r19.21bi 3135 |
. . . . . 6
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))) |
49 | 14 | notbid 318 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (¬ 𝑣(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑦)) |
50 | 13, 49 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))) |
51 | 50 | cbvrexvw 3385 |
. . . . . 6
⊢
(∃𝑥 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)) |
52 | 48, 51 | syl6ib 250 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g‘𝑊)(lt‘𝑊)𝑣 → ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))) |
53 | 52 | 3impia 1116 |
. . . 4
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)) |
54 | | simp1l1 1265 |
. . . . . 6
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ oGrp) |
55 | | isogrp 31337 |
. . . . . . 7
⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) |
56 | 55 | simprbi 497 |
. . . . . 6
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
57 | | omndtos 31340 |
. . . . . 6
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) |
58 | 54, 56, 57 | 3syl 18 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ Toset) |
59 | | simp2 1136 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → 𝑣 ∈ (Base‘𝑊)) |
60 | 1, 3, 4 | tltnle 18149 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑦(lt‘𝑊)𝑣 ↔ ¬ 𝑣(le‘𝑊)𝑦)) |
61 | 60 | bicomd 222 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦 ↔ 𝑦(lt‘𝑊)𝑣)) |
62 | 61 | 3com23 1125 |
. . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦 ↔ 𝑦(lt‘𝑊)𝑣)) |
63 | 62 | 3expa 1117 |
. . . . . . 7
⊢ (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦 ↔ 𝑦(lt‘𝑊)𝑣)) |
64 | 63 | anbi2d 629 |
. . . . . 6
⊢ (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣))) |
65 | 64 | rexbidva 3226 |
. . . . 5
⊢ ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) → (∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣))) |
66 | 58, 59, 65 | syl2anc 584 |
. . . 4
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → (∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣))) |
67 | 53, 66 | mpbid 231 |
. . 3
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g‘𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑦 ∧ 𝑦(lt‘𝑊)𝑣)) |
68 | 1, 2, 3, 4, 5, 29,
30, 31, 32, 67 | archiabllem2 31460 |
. 2
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → 𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel) |
69 | 28, 68 | pm2.61dan 810 |
1
⊢ ((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel) |