Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabl Structured version   Visualization version   GIF version

Theorem archiabl 30978
Description: Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
archiabl ((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel)

Proof of Theorem archiabl
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2758 . . . . 5 (0g𝑊) = (0g𝑊)
3 eqid 2758 . . . . 5 (le‘𝑊) = (le‘𝑊)
4 eqid 2758 . . . . 5 (lt‘𝑊) = (lt‘𝑊)
5 eqid 2758 . . . . 5 (.g𝑊) = (.g𝑊)
6 simpll1 1209 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp)
7 simpll3 1211 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Archi)
8 simplr 768 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑣 ∈ (Base‘𝑊))
9 simprl 770 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → (0g𝑊)(lt‘𝑊)𝑣)
10 simp2 1134 . . . . . 6 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → 𝑦 ∈ (Base‘𝑊))
11 simp1rr 1236 . . . . . 6 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))
12 simp3 1135 . . . . . 6 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → (0g𝑊)(lt‘𝑊)𝑦)
13 breq2 5036 . . . . . . . 8 (𝑥 = 𝑦 → ((0g𝑊)(lt‘𝑊)𝑥 ↔ (0g𝑊)(lt‘𝑊)𝑦))
14 breq2 5036 . . . . . . . 8 (𝑥 = 𝑦 → (𝑣(le‘𝑊)𝑥𝑣(le‘𝑊)𝑦))
1513, 14imbi12d 348 . . . . . . 7 (𝑥 = 𝑦 → (((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑦𝑣(le‘𝑊)𝑦)))
1615rspcv 3536 . . . . . 6 (𝑦 ∈ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥) → ((0g𝑊)(lt‘𝑊)𝑦𝑣(le‘𝑊)𝑦)))
1710, 11, 12, 16syl3c 66 . . . . 5 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) ∧ 𝑦 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑦) → 𝑣(le‘𝑊)𝑦)
181, 2, 3, 4, 5, 6, 7, 8, 9, 17archiabllem1 30973 . . . 4 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
1918adantllr 718 . . 3 (((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
20 simpr 488 . . . 4 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
21 breq2 5036 . . . . . 6 (𝑢 = 𝑣 → ((0g𝑊)(lt‘𝑊)𝑢 ↔ (0g𝑊)(lt‘𝑊)𝑣))
22 breq1 5035 . . . . . . . 8 (𝑢 = 𝑣 → (𝑢(le‘𝑊)𝑥𝑣(le‘𝑊)𝑥))
2322imbi2d 344 . . . . . . 7 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2423ralbidv 3126 . . . . . 6 (𝑢 = 𝑣 → (∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥) ↔ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2521, 24anbi12d 633 . . . . 5 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥))))
2625cbvrexvw 3362 . . . 4 (∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ∃𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2720, 26sylib 221 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∃𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑣(le‘𝑊)𝑥)))
2819, 27r19.29a 3213 . 2 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
29 simpl1 1188 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ oGrp)
30 simpl3 1190 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Archi)
31 eqid 2758 . . 3 (+g𝑊) = (+g𝑊)
32 simpl2 1189 . . 3 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → (oppg𝑊) ∈ oGrp)
33 simpr 488 . . . . . . . . . 10 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
34 ralnex 3163 . . . . . . . . . 10 (∀𝑢 ∈ (Base‘𝑊) ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
3533, 34sylibr 237 . . . . . . . . 9 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
36 rexanali 3189 . . . . . . . . . . . 12 (∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ¬ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))
3736imbi2i 339 . . . . . . . . . . 11 (((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
38 imnan 403 . . . . . . . . . . 11 (((0g𝑊)(lt‘𝑊)𝑢 → ¬ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
3937, 38bitri 278 . . . . . . . . . 10 (((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
4039ralbii 3097 . . . . . . . . 9 (∀𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑢 ∈ (Base‘𝑊) ¬ ((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥)))
4135, 40sylibr 237 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∀𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)))
4222notbid 321 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (¬ 𝑢(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑥))
4342anbi2d 631 . . . . . . . . . . 11 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4443rexbidv 3221 . . . . . . . . . 10 (𝑢 = 𝑣 → (∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥) ↔ ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4521, 44imbi12d 348 . . . . . . . . 9 (𝑢 = 𝑣 → (((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥))))
4645cbvralvw 3361 . . . . . . . 8 (∀𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑢(le‘𝑊)𝑥)) ↔ ∀𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4741, 46sylib 221 . . . . . . 7 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → ∀𝑣 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4847r19.21bi 3137 . . . . . 6 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥)))
4914notbid 321 . . . . . . . 8 (𝑥 = 𝑦 → (¬ 𝑣(le‘𝑊)𝑥 ↔ ¬ 𝑣(le‘𝑊)𝑦))
5013, 49anbi12d 633 . . . . . . 7 (𝑥 = 𝑦 → (((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)))
5150cbvrexvw 3362 . . . . . 6 (∃𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 ∧ ¬ 𝑣(le‘𝑊)𝑥) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))
5248, 51syl6ib 254 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊)) → ((0g𝑊)(lt‘𝑊)𝑣 → ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦)))
53523impia 1114 . . . 4 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦))
54 simp1l1 1263 . . . . . 6 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ oGrp)
55 isogrp 30854 . . . . . . 7 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
5655simprbi 500 . . . . . 6 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
57 omndtos 30857 . . . . . 6 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
5854, 56, 573syl 18 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → 𝑊 ∈ Toset)
59 simp2 1134 . . . . 5 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → 𝑣 ∈ (Base‘𝑊))
601, 3, 4tltnle 30771 . . . . . . . . . 10 ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑦(lt‘𝑊)𝑣 ↔ ¬ 𝑣(le‘𝑊)𝑦))
6160bicomd 226 . . . . . . . . 9 ((𝑊 ∈ Toset ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
62613com23 1123 . . . . . . . 8 ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
63623expa 1115 . . . . . . 7 (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (¬ 𝑣(le‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
6463anbi2d 631 . . . . . 6 (((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣)))
6564rexbidva 3220 . . . . 5 ((𝑊 ∈ Toset ∧ 𝑣 ∈ (Base‘𝑊)) → (∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣)))
6658, 59, 65syl2anc 587 . . . 4 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → (∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦 ∧ ¬ 𝑣(le‘𝑊)𝑦) ↔ ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣)))
6753, 66mpbid 235 . . 3 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) ∧ 𝑣 ∈ (Base‘𝑊) ∧ (0g𝑊)(lt‘𝑊)𝑣) → ∃𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑦𝑦(lt‘𝑊)𝑣))
681, 2, 3, 4, 5, 29, 30, 31, 32, 67archiabllem2 30977 . 2 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ ¬ ∃𝑢 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥𝑢(le‘𝑊)𝑥))) → 𝑊 ∈ Abel)
6928, 68pm2.61dan 812 1 ((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071   class class class wbr 5032  cfv 6335  Basecbs 16541  +gcplusg 16623  lecple 16630  0gc0g 16771  ltcplt 17617  Tosetctos 17709  Grpcgrp 18169  .gcmg 18291  oppgcoppg 18540  Abelcabl 18974  oMndcomnd 30849  oGrpcogrp 30850  Archicarchi 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-seq 13419  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-plusg 16636  df-ple 16643  df-0g 16773  df-proset 17604  df-poset 17622  df-plt 17634  df-toset 17710  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-oppg 18541  df-cmn 18975  df-abl 18976  df-omnd 30851  df-ogrp 30852  df-inftm 30958  df-archi 30959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator