| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ornglmulle | Structured version Visualization version GIF version | ||
| Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
| ornglmullt.t | ⊢ · = (.r‘𝑅) |
| ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
| ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
| ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| orngmulle.l | ⊢ ≤ = (le‘𝑅) |
| orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| ornglmulle | ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
| 2 | orngogrp 33331 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
| 4 | isogrp 33079 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
| 7 | orngring 33330 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | ringgrp 20235 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 13 | 11, 12 | grpidcl 18983 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 15 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 16 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 18 | 11, 17 | ringcl 20247 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 · 𝑌) ∈ 𝐵) |
| 19 | 8, 15, 16, 18 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑌) ∈ 𝐵) |
| 20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | 11, 17 | ringcl 20247 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑍 · 𝑋) ∈ 𝐵) |
| 22 | 8, 15, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑋) ∈ 𝐵) |
| 23 | eqid 2737 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 24 | 11, 23 | grpsubcl 19038 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
| 25 | 10, 19, 22, 24 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
| 26 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
| 27 | 11, 23 | grpsubcl 19038 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 28 | 10, 16, 20, 27 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 29 | 11, 12, 23 | grpsubid 19042 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 30 | 10, 20, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 31 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 32 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
| 33 | 11, 32, 23 | ogrpsub 33093 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 34 | 3, 20, 16, 20, 31, 33 | syl131anc 1385 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 35 | 30, 34 | eqbrtrrd 5167 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
| 36 | 11, 32, 12, 17 | orngmul 33333 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍) ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋))) → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
| 37 | 1, 15, 26, 28, 35, 36 | syl122anc 1381 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
| 38 | 11, 17, 23, 8, 15, 16, 20 | ringsubdi 20304 | . . . 4 ⊢ (𝜑 → (𝑍 · (𝑌(-g‘𝑅)𝑋)) = ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
| 39 | 37, 38 | breqtrd 5169 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
| 40 | eqid 2737 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 41 | 11, 32, 40 | omndadd 33083 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
| 42 | 6, 14, 25, 22, 39, 41 | syl131anc 1385 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
| 43 | 11, 40, 12 | grplid 18985 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
| 44 | 10, 22, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
| 45 | 11, 40, 23 | grpnpcan 19050 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
| 46 | 10, 19, 22, 45 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
| 47 | 42, 44, 46 | 3brtr3d 5174 | 1 ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 lecple 17304 0gc0g 17484 Grpcgrp 18951 -gcsg 18953 Ringcrg 20230 oMndcomnd 33074 oGrpcogrp 33075 oRingcorng 33325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-omnd 33076 df-ogrp 33077 df-orng 33327 |
| This theorem is referenced by: ornglmullt 33337 |
| Copyright terms: Public domain | W3C validator |