Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ornglmulle | Structured version Visualization version GIF version |
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
Ref | Expression |
---|---|
ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
ornglmullt.t | ⊢ · = (.r‘𝑅) |
ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
orngmulle.l | ⊢ ≤ = (le‘𝑅) |
orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
Ref | Expression |
---|---|
ornglmulle | ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
2 | orngogrp 31500 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
4 | isogrp 31328 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
5 | 4 | simprbi 497 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
7 | orngring 31499 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | ringgrp 19788 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
13 | 11, 12 | grpidcl 18607 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
15 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
16 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
18 | 11, 17 | ringcl 19800 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 · 𝑌) ∈ 𝐵) |
19 | 8, 15, 16, 18 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑌) ∈ 𝐵) |
20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 11, 17 | ringcl 19800 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑍 · 𝑋) ∈ 𝐵) |
22 | 8, 15, 20, 21 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑋) ∈ 𝐵) |
23 | eqid 2738 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
24 | 11, 23 | grpsubcl 18655 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
25 | 10, 19, 22, 24 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
26 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
27 | 11, 23 | grpsubcl 18655 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
28 | 10, 16, 20, 27 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
29 | 11, 12, 23 | grpsubid 18659 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
30 | 10, 20, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
31 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
32 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
33 | 11, 32, 23 | ogrpsub 31342 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
34 | 3, 20, 16, 20, 31, 33 | syl131anc 1382 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
35 | 30, 34 | eqbrtrrd 5098 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
36 | 11, 32, 12, 17 | orngmul 31502 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍) ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋))) → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
37 | 1, 15, 26, 28, 35, 36 | syl122anc 1378 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
38 | 11, 17, 23, 8, 15, 16, 20 | ringsubdi 19838 | . . . 4 ⊢ (𝜑 → (𝑍 · (𝑌(-g‘𝑅)𝑋)) = ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
39 | 37, 38 | breqtrd 5100 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
40 | eqid 2738 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
41 | 11, 32, 40 | omndadd 31332 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
42 | 6, 14, 25, 22, 39, 41 | syl131anc 1382 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
43 | 11, 40, 12 | grplid 18609 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
44 | 10, 22, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
45 | 11, 40, 23 | grpnpcan 18667 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
46 | 10, 19, 22, 45 | syl3anc 1370 | . 2 ⊢ (𝜑 → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
47 | 42, 44, 46 | 3brtr3d 5105 | 1 ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 lecple 16969 0gc0g 17150 Grpcgrp 18577 -gcsg 18579 Ringcrg 19783 oMndcomnd 31323 oGrpcogrp 31324 oRingcorng 31494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mgp 19721 df-ur 19738 df-ring 19785 df-omnd 31325 df-ogrp 31326 df-orng 31496 |
This theorem is referenced by: ornglmullt 31506 |
Copyright terms: Public domain | W3C validator |