Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ornglmulle | Structured version Visualization version GIF version |
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
Ref | Expression |
---|---|
ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
ornglmullt.t | ⊢ · = (.r‘𝑅) |
ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
orngmulle.l | ⊢ ≤ = (le‘𝑅) |
orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
Ref | Expression |
---|---|
ornglmulle | ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
2 | orngogrp 31077 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
4 | isogrp 30905 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
5 | 4 | simprbi 500 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
7 | orngring 31076 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | ringgrp 19421 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
13 | 11, 12 | grpidcl 18249 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
15 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
16 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
18 | 11, 17 | ringcl 19433 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 · 𝑌) ∈ 𝐵) |
19 | 8, 15, 16, 18 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑌) ∈ 𝐵) |
20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 11, 17 | ringcl 19433 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑍 · 𝑋) ∈ 𝐵) |
22 | 8, 15, 20, 21 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑋) ∈ 𝐵) |
23 | eqid 2738 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
24 | 11, 23 | grpsubcl 18297 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
25 | 10, 19, 22, 24 | syl3anc 1372 | . . 3 ⊢ (𝜑 → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
26 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
27 | 11, 23 | grpsubcl 18297 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
28 | 10, 16, 20, 27 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
29 | 11, 12, 23 | grpsubid 18301 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
30 | 10, 20, 29 | syl2anc 587 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
31 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
32 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
33 | 11, 32, 23 | ogrpsub 30919 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
34 | 3, 20, 16, 20, 31, 33 | syl131anc 1384 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
35 | 30, 34 | eqbrtrrd 5054 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
36 | 11, 32, 12, 17 | orngmul 31079 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍) ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋))) → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
37 | 1, 15, 26, 28, 35, 36 | syl122anc 1380 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
38 | 11, 17, 23, 8, 15, 16, 20 | ringsubdi 19471 | . . . 4 ⊢ (𝜑 → (𝑍 · (𝑌(-g‘𝑅)𝑋)) = ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
39 | 37, 38 | breqtrd 5056 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
40 | eqid 2738 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
41 | 11, 32, 40 | omndadd 30909 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
42 | 6, 14, 25, 22, 39, 41 | syl131anc 1384 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
43 | 11, 40, 12 | grplid 18251 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
44 | 10, 22, 43 | syl2anc 587 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
45 | 11, 40, 23 | grpnpcan 18309 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
46 | 10, 19, 22, 45 | syl3anc 1372 | . 2 ⊢ (𝜑 → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
47 | 42, 44, 46 | 3brtr3d 5061 | 1 ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 +gcplusg 16668 .rcmulr 16669 lecple 16675 0gc0g 16816 Grpcgrp 18219 -gcsg 18221 Ringcrg 19416 oMndcomnd 30900 oGrpcogrp 30901 oRingcorng 31071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-plusg 16681 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mgp 19359 df-ur 19371 df-ring 19418 df-omnd 30902 df-ogrp 30903 df-orng 31073 |
This theorem is referenced by: ornglmullt 31083 |
Copyright terms: Public domain | W3C validator |