| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ornglmulle | Structured version Visualization version GIF version | ||
| Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
| ornglmullt.t | ⊢ · = (.r‘𝑅) |
| ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
| ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
| ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| orngmulle.l | ⊢ ≤ = (le‘𝑅) |
| orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| ornglmulle | ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
| 2 | orngogrp 20788 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
| 4 | isogrp 20046 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
| 7 | orngring 20787 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | ringgrp 20166 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 13 | 11, 12 | grpidcl 18888 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 15 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 16 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 18 | 11, 17 | ringcl 20178 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 · 𝑌) ∈ 𝐵) |
| 19 | 8, 15, 16, 18 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑌) ∈ 𝐵) |
| 20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | 11, 17 | ringcl 20178 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑍 · 𝑋) ∈ 𝐵) |
| 22 | 8, 15, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑋) ∈ 𝐵) |
| 23 | eqid 2733 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 24 | 11, 23 | grpsubcl 18943 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
| 25 | 10, 19, 22, 24 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
| 26 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
| 27 | 11, 23 | grpsubcl 18943 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 28 | 10, 16, 20, 27 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 29 | 11, 12, 23 | grpsubid 18947 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 30 | 10, 20, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 31 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 32 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
| 33 | 11, 32, 23 | ogrpsub 20059 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 34 | 3, 20, 16, 20, 31, 33 | syl131anc 1385 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 35 | 30, 34 | eqbrtrrd 5119 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
| 36 | 11, 32, 12, 17 | orngmul 20790 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍) ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋))) → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
| 37 | 1, 15, 26, 28, 35, 36 | syl122anc 1381 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
| 38 | 11, 17, 23, 8, 15, 16, 20 | ringsubdi 20235 | . . . 4 ⊢ (𝜑 → (𝑍 · (𝑌(-g‘𝑅)𝑋)) = ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
| 39 | 37, 38 | breqtrd 5121 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
| 40 | eqid 2733 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 41 | 11, 32, 40 | omndadd 20050 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
| 42 | 6, 14, 25, 22, 39, 41 | syl131anc 1385 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
| 43 | 11, 40, 12 | grplid 18890 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
| 44 | 10, 22, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
| 45 | 11, 40, 23 | grpnpcan 18955 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
| 46 | 10, 19, 22, 45 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
| 47 | 42, 44, 46 | 3brtr3d 5126 | 1 ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 .rcmulr 17172 lecple 17178 0gc0g 17353 Grpcgrp 18856 -gcsg 18858 oMndcomnd 20041 oGrpcogrp 20042 Ringcrg 20161 oRingcorng 20782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-cmn 19704 df-abl 19705 df-omnd 20043 df-ogrp 20044 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-orng 20784 |
| This theorem is referenced by: ornglmullt 20794 |
| Copyright terms: Public domain | W3C validator |