| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ornglmulle | Structured version Visualization version GIF version | ||
| Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| ornglmullt.b | ⊢ 𝐵 = (Base‘𝑅) |
| ornglmullt.t | ⊢ · = (.r‘𝑅) |
| ornglmullt.0 | ⊢ 0 = (0g‘𝑅) |
| ornglmullt.1 | ⊢ (𝜑 → 𝑅 ∈ oRing) |
| ornglmullt.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ornglmullt.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ornglmullt.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| orngmulle.l | ⊢ ≤ = (le‘𝑅) |
| orngmulle.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| orngmulle.6 | ⊢ (𝜑 → 0 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| ornglmulle | ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ oRing) | |
| 2 | orngogrp 33286 | . . . . 5 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ oGrp) |
| 4 | isogrp 33023 | . . . . 5 ⊢ (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd)) | |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ oGrp → 𝑅 ∈ oMnd) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ oMnd) |
| 7 | orngring 33285 | . . . . . 6 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | ringgrp 20154 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 11 | ornglmullt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | ornglmullt.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 13 | 11, 12 | grpidcl 18904 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 15 | ornglmullt.4 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 16 | ornglmullt.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | ornglmullt.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 18 | 11, 17 | ringcl 20166 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 · 𝑌) ∈ 𝐵) |
| 19 | 8, 15, 16, 18 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑌) ∈ 𝐵) |
| 20 | ornglmullt.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | 11, 17 | ringcl 20166 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑍 · 𝑋) ∈ 𝐵) |
| 22 | 8, 15, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑍 · 𝑋) ∈ 𝐵) |
| 23 | eqid 2730 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 24 | 11, 23 | grpsubcl 18959 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
| 25 | 10, 19, 22, 24 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵) |
| 26 | orngmulle.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑍) | |
| 27 | 11, 23 | grpsubcl 18959 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 28 | 10, 16, 20, 27 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑌(-g‘𝑅)𝑋) ∈ 𝐵) |
| 29 | 11, 12, 23 | grpsubid 18963 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 30 | 10, 20, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) = 0 ) |
| 31 | orngmulle.5 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 32 | orngmulle.l | . . . . . . . 8 ⊢ ≤ = (le‘𝑅) | |
| 33 | 11, 32, 23 | ogrpsub 33037 | . . . . . . 7 ⊢ ((𝑅 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 34 | 3, 20, 16, 20, 31, 33 | syl131anc 1385 | . . . . . 6 ⊢ (𝜑 → (𝑋(-g‘𝑅)𝑋) ≤ (𝑌(-g‘𝑅)𝑋)) |
| 35 | 30, 34 | eqbrtrrd 5134 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝑌(-g‘𝑅)𝑋)) |
| 36 | 11, 32, 12, 17 | orngmul 33288 | . . . . 5 ⊢ ((𝑅 ∈ oRing ∧ (𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍) ∧ ((𝑌(-g‘𝑅)𝑋) ∈ 𝐵 ∧ 0 ≤ (𝑌(-g‘𝑅)𝑋))) → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
| 37 | 1, 15, 26, 28, 35, 36 | syl122anc 1381 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑍 · (𝑌(-g‘𝑅)𝑋))) |
| 38 | 11, 17, 23, 8, 15, 16, 20 | ringsubdi 20223 | . . . 4 ⊢ (𝜑 → (𝑍 · (𝑌(-g‘𝑅)𝑋)) = ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
| 39 | 37, 38 | breqtrd 5136 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) |
| 40 | eqid 2730 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 41 | 11, 32, 40 | omndadd 33027 | . . 3 ⊢ ((𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
| 42 | 6, 14, 25, 22, 39, 41 | syl131anc 1385 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) ≤ (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋))) |
| 43 | 11, 40, 12 | grplid 18906 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
| 44 | 10, 22, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋)) |
| 45 | 11, 40, 23 | grpnpcan 18971 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
| 46 | 10, 19, 22, 45 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝑍 · 𝑌)(-g‘𝑅)(𝑍 · 𝑋))(+g‘𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌)) |
| 47 | 42, 44, 46 | 3brtr3d 5141 | 1 ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 lecple 17234 0gc0g 17409 Grpcgrp 18872 -gcsg 18874 Ringcrg 20149 oMndcomnd 33018 oGrpcogrp 33019 oRingcorng 33280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-omnd 33020 df-ogrp 33021 df-orng 33282 |
| This theorem is referenced by: ornglmullt 33292 |
| Copyright terms: Public domain | W3C validator |