Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptpconn Structured version   Visualization version   GIF version

Theorem ptpconn 32593
Description: The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
ptpconn ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)

Proof of Theorem ptpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 32585 . . . . 5 (𝑥 ∈ PConn → 𝑥 ∈ Top)
21ssriv 3919 . . . 4 PConn ⊆ Top
3 fss 6501 . . . 4 ((𝐹:𝐴⟶PConn ∧ PConn ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 690 . . 3 (𝐹:𝐴⟶PConn → 𝐹:𝐴⟶Top)
5 pttop 22187 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 595 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ Top)
7 fvi 6715 . . . . . . . . . 10 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
87ad2antrr 725 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ( I ‘𝐴) = 𝐴)
98eleq2d 2875 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑡 ∈ ( I ‘𝐴) ↔ 𝑡𝐴))
109biimpa 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → 𝑡𝐴)
11 simplr 768 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝐹:𝐴⟶PConn)
1211ffvelrnda 6828 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝐹𝑡) ∈ PConn)
13 simprl 770 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
14 eqid 2798 . . . . . . . . . . . . . . . 16 (∏t𝐹) = (∏t𝐹)
1514ptuni 22199 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
164, 15sylan2 595 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶PConn) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1716adantr 484 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1813, 17eleqtrrd 2893 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑡𝐴 (𝐹𝑡))
19 vex 3444 . . . . . . . . . . . . 13 𝑥 ∈ V
2019elixp 8451 . . . . . . . . . . . 12 (𝑥X𝑡𝐴 (𝐹𝑡) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2118, 20sylib 221 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2221simprd 499 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡))
2322r19.21bi 3173 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑥𝑡) ∈ (𝐹𝑡))
24 simprr 772 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
2524, 17eleqtrrd 2893 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑡𝐴 (𝐹𝑡))
26 vex 3444 . . . . . . . . . . . . 13 𝑦 ∈ V
2726elixp 8451 . . . . . . . . . . . 12 (𝑦X𝑡𝐴 (𝐹𝑡) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2825, 27sylib 221 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2928simprd 499 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡))
3029r19.21bi 3173 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑦𝑡) ∈ (𝐹𝑡))
31 eqid 2798 . . . . . . . . . 10 (𝐹𝑡) = (𝐹𝑡)
3231pconncn 32584 . . . . . . . . 9 (((𝐹𝑡) ∈ PConn ∧ (𝑥𝑡) ∈ (𝐹𝑡) ∧ (𝑦𝑡) ∈ (𝐹𝑡)) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
3312, 23, 30, 32syl3anc 1368 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
34 df-rex 3112 . . . . . . . 8 (∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3533, 34sylib 221 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3610, 35syldan 594 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3736ralrimiva 3149 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
38 fvex 6658 . . . . . 6 ( I ‘𝐴) ∈ V
39 eleq1 2877 . . . . . . 7 (𝑓 = (𝑔𝑡) → (𝑓 ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑡) ∈ (II Cn (𝐹𝑡))))
40 fveq1 6644 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘0) = ((𝑔𝑡)‘0))
4140eqeq1d 2800 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘0) = (𝑥𝑡) ↔ ((𝑔𝑡)‘0) = (𝑥𝑡)))
42 fveq1 6644 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘1) = ((𝑔𝑡)‘1))
4342eqeq1d 2800 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘1) = (𝑦𝑡) ↔ ((𝑔𝑡)‘1) = (𝑦𝑡)))
4441, 43anbi12d 633 . . . . . . 7 (𝑓 = (𝑔𝑡) → (((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
4539, 44anbi12d 633 . . . . . 6 (𝑓 = (𝑔𝑡) → ((𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) ↔ ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4638, 45ac6s2 9897 . . . . 5 (∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4737, 46syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
48 iitopon 23484 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
4948a1i 11 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → II ∈ (TopOn‘(0[,]1)))
50 simplll 774 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐴𝑉)
5111adantr 484 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶PConn)
5251, 4syl 17 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶Top)
538adantr 484 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ( I ‘𝐴) = 𝐴)
5453eleq2d 2875 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖 ∈ ( I ‘𝐴) ↔ 𝑖𝐴))
5554biimpar 481 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → 𝑖 ∈ ( I ‘𝐴))
56 simprr 772 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
57 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (𝑔𝑡) = (𝑔𝑖))
58 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝐹𝑡) = (𝐹𝑖))
5958oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (II Cn (𝐹𝑡)) = (II Cn (𝐹𝑖)))
6057, 59eleq12d 2884 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑖) ∈ (II Cn (𝐹𝑖))))
6157fveq1d 6647 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘0) = ((𝑔𝑖)‘0))
62 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑥𝑡) = (𝑥𝑖))
6361, 62eqeq12d 2814 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘0) = (𝑥𝑡) ↔ ((𝑔𝑖)‘0) = (𝑥𝑖)))
6457fveq1d 6647 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘1) = ((𝑔𝑖)‘1))
65 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑦𝑡) = (𝑦𝑖))
6664, 65eqeq12d 2814 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘1) = (𝑦𝑡) ↔ ((𝑔𝑖)‘1) = (𝑦𝑖)))
6763, 66anbi12d 633 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)) ↔ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
6860, 67anbi12d 633 . . . . . . . . . . . . 13 (𝑡 = 𝑖 → (((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ↔ ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))))
6968rspccva 3570 . . . . . . . . . . . 12 ((∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7056, 69sylan 583 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7155, 70syldan 594 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7271simpld 498 . . . . . . . . 9 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) ∈ (II Cn (𝐹𝑖)))
73 iiuni 23486 . . . . . . . . . 10 (0[,]1) = II
74 eqid 2798 . . . . . . . . . 10 (𝐹𝑖) = (𝐹𝑖)
7573, 74cnf 21851 . . . . . . . . 9 ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7672, 75syl 17 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7776feqmptd 6708 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) = (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)))
7877, 72eqeltrrd 2891 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)) ∈ (II Cn (𝐹𝑖)))
7914, 49, 50, 52, 78ptcn 22232 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)))
8071simprd 499 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))
8180simpld 498 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘0) = (𝑥𝑖))
8281mpteq2dva 5125 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) = (𝑖𝐴 ↦ (𝑥𝑖)))
83 0elunit 12847 . . . . . . 7 0 ∈ (0[,]1)
84 mptexg 6961 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
8550, 84syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
86 fveq2 6645 . . . . . . . . 9 (𝑧 = 0 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘0))
8786mpteq2dv 5126 . . . . . . . 8 (𝑧 = 0 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
88 eqid 2798 . . . . . . . 8 (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))
8987, 88fvmptg 6743 . . . . . . 7 ((0 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9083, 85, 89sylancr 590 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9121simpld 498 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
9291adantr 484 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 Fn 𝐴)
93 dffn5 6699 . . . . . . 7 (𝑥 Fn 𝐴𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9492, 93sylib 221 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9582, 90, 943eqtr4d 2843 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥)
9680simprd 499 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘1) = (𝑦𝑖))
9796mpteq2dva 5125 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) = (𝑖𝐴 ↦ (𝑦𝑖)))
98 1elunit 12848 . . . . . . 7 1 ∈ (0[,]1)
99 mptexg 6961 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
10050, 99syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
101 fveq2 6645 . . . . . . . . 9 (𝑧 = 1 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘1))
102101mpteq2dv 5126 . . . . . . . 8 (𝑧 = 1 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
103102, 88fvmptg 6743 . . . . . . 7 ((1 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10498, 100, 103sylancr 590 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10528simpld 498 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
106105adantr 484 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 Fn 𝐴)
107 dffn5 6699 . . . . . . 7 (𝑦 Fn 𝐴𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
108106, 107sylib 221 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
10997, 104, 1083eqtr4d 2843 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)
110 fveq1 6644 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0))
111110eqeq1d 2800 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥))
112 fveq1 6644 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1))
113112eqeq1d 2800 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦))
114111, 113anbi12d 633 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)))
115114rspcev 3571 . . . . 5 (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)) ∧ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11679, 95, 109, 115syl12anc 835 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11747, 116exlimddv 1936 . . 3 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
118117ralrimivva 3156 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
119 eqid 2798 . . 3 (∏t𝐹) = (∏t𝐹)
120119ispconn 32583 . 2 ((∏t𝐹) ∈ PConn ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1216, 118, 120sylanbrc 586 1 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881   cuni 4800  cmpt 5110   I cid 5424   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Xcixp 8444  0cc0 10526  1c1 10527  [,]cicc 12729  tcpt 16704  Topctop 21498  TopOnctopon 21515   Cn ccn 21829  IIcii 23480  PConncpconn 32579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-r1 9177  df-rank 9178  df-card 9352  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-topgen 16709  df-pt 16710  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cnp 21833  df-ii 23482  df-pconn 32581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator