Step | Hyp | Ref
| Expression |
1 | | pconntop 34514 |
. . . . 5
β’ (π₯ β PConn β π₯ β Top) |
2 | 1 | ssriv 3985 |
. . . 4
β’ PConn
β Top |
3 | | fss 6733 |
. . . 4
β’ ((πΉ:π΄βΆPConn β§ PConn β Top)
β πΉ:π΄βΆTop) |
4 | 2, 3 | mpan2 687 |
. . 3
β’ (πΉ:π΄βΆPConn β πΉ:π΄βΆTop) |
5 | | pttop 23306 |
. . 3
β’ ((π΄ β π β§ πΉ:π΄βΆTop) β
(βtβπΉ) β Top) |
6 | 4, 5 | sylan2 591 |
. 2
β’ ((π΄ β π β§ πΉ:π΄βΆPConn) β
(βtβπΉ) β Top) |
7 | | fvi 6966 |
. . . . . . . . . 10
β’ (π΄ β π β ( I βπ΄) = π΄) |
8 | 7 | ad2antrr 722 |
. . . . . . . . 9
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β ( I βπ΄) = π΄) |
9 | 8 | eleq2d 2817 |
. . . . . . . 8
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β (π‘ β ( I βπ΄) β π‘ β π΄)) |
10 | 9 | biimpa 475 |
. . . . . . 7
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ π‘ β ( I βπ΄)) β π‘ β π΄) |
11 | | simplr 765 |
. . . . . . . . . 10
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β πΉ:π΄βΆPConn) |
12 | 11 | ffvelcdmda 7085 |
. . . . . . . . 9
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ π‘ β π΄) β (πΉβπ‘) β PConn) |
13 | | simprl 767 |
. . . . . . . . . . . . 13
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β π₯ β βͺ
(βtβπΉ)) |
14 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’
(βtβπΉ) = (βtβπΉ) |
15 | 14 | ptuni 23318 |
. . . . . . . . . . . . . . 15
β’ ((π΄ β π β§ πΉ:π΄βΆTop) β Xπ‘ β
π΄ βͺ (πΉβπ‘) = βͺ
(βtβπΉ)) |
16 | 4, 15 | sylan2 591 |
. . . . . . . . . . . . . 14
β’ ((π΄ β π β§ πΉ:π΄βΆPConn) β Xπ‘ β
π΄ βͺ (πΉβπ‘) = βͺ
(βtβπΉ)) |
17 | 16 | adantr 479 |
. . . . . . . . . . . . 13
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β Xπ‘ β π΄ βͺ (πΉβπ‘) = βͺ
(βtβπΉ)) |
18 | 13, 17 | eleqtrrd 2834 |
. . . . . . . . . . . 12
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β π₯ β Xπ‘ β π΄ βͺ (πΉβπ‘)) |
19 | | vex 3476 |
. . . . . . . . . . . . 13
β’ π₯ β V |
20 | 19 | elixp 8900 |
. . . . . . . . . . . 12
β’ (π₯ β Xπ‘ β
π΄ βͺ (πΉβπ‘) β (π₯ Fn π΄ β§ βπ‘ β π΄ (π₯βπ‘) β βͺ (πΉβπ‘))) |
21 | 18, 20 | sylib 217 |
. . . . . . . . . . 11
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β (π₯ Fn π΄ β§ βπ‘ β π΄ (π₯βπ‘) β βͺ (πΉβπ‘))) |
22 | 21 | simprd 494 |
. . . . . . . . . 10
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β βπ‘ β π΄ (π₯βπ‘) β βͺ (πΉβπ‘)) |
23 | 22 | r19.21bi 3246 |
. . . . . . . . 9
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ π‘ β π΄) β (π₯βπ‘) β βͺ (πΉβπ‘)) |
24 | | simprr 769 |
. . . . . . . . . . . . 13
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β π¦ β βͺ
(βtβπΉ)) |
25 | 24, 17 | eleqtrrd 2834 |
. . . . . . . . . . . 12
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β π¦ β Xπ‘ β π΄ βͺ (πΉβπ‘)) |
26 | | vex 3476 |
. . . . . . . . . . . . 13
β’ π¦ β V |
27 | 26 | elixp 8900 |
. . . . . . . . . . . 12
β’ (π¦ β Xπ‘ β
π΄ βͺ (πΉβπ‘) β (π¦ Fn π΄ β§ βπ‘ β π΄ (π¦βπ‘) β βͺ (πΉβπ‘))) |
28 | 25, 27 | sylib 217 |
. . . . . . . . . . 11
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β (π¦ Fn π΄ β§ βπ‘ β π΄ (π¦βπ‘) β βͺ (πΉβπ‘))) |
29 | 28 | simprd 494 |
. . . . . . . . . 10
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β βπ‘ β π΄ (π¦βπ‘) β βͺ (πΉβπ‘)) |
30 | 29 | r19.21bi 3246 |
. . . . . . . . 9
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ π‘ β π΄) β (π¦βπ‘) β βͺ (πΉβπ‘)) |
31 | | eqid 2730 |
. . . . . . . . . 10
β’ βͺ (πΉβπ‘) = βͺ (πΉβπ‘) |
32 | 31 | pconncn 34513 |
. . . . . . . . 9
β’ (((πΉβπ‘) β PConn β§ (π₯βπ‘) β βͺ (πΉβπ‘) β§ (π¦βπ‘) β βͺ (πΉβπ‘)) β βπ β (II Cn (πΉβπ‘))((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘))) |
33 | 12, 23, 30, 32 | syl3anc 1369 |
. . . . . . . 8
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ π‘ β π΄) β βπ β (II Cn (πΉβπ‘))((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘))) |
34 | | df-rex 3069 |
. . . . . . . 8
β’
(βπ β (II
Cn (πΉβπ‘))((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘)) β βπ(π β (II Cn (πΉβπ‘)) β§ ((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘)))) |
35 | 33, 34 | sylib 217 |
. . . . . . 7
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ π‘ β π΄) β βπ(π β (II Cn (πΉβπ‘)) β§ ((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘)))) |
36 | 10, 35 | syldan 589 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ π‘ β ( I βπ΄)) β βπ(π β (II Cn (πΉβπ‘)) β§ ((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘)))) |
37 | 36 | ralrimiva 3144 |
. . . . 5
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β βπ‘ β ( I βπ΄)βπ(π β (II Cn (πΉβπ‘)) β§ ((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘)))) |
38 | | fvex 6903 |
. . . . . 6
β’ ( I
βπ΄) β
V |
39 | | eleq1 2819 |
. . . . . . 7
β’ (π = (πβπ‘) β (π β (II Cn (πΉβπ‘)) β (πβπ‘) β (II Cn (πΉβπ‘)))) |
40 | | fveq1 6889 |
. . . . . . . . 9
β’ (π = (πβπ‘) β (πβ0) = ((πβπ‘)β0)) |
41 | 40 | eqeq1d 2732 |
. . . . . . . 8
β’ (π = (πβπ‘) β ((πβ0) = (π₯βπ‘) β ((πβπ‘)β0) = (π₯βπ‘))) |
42 | | fveq1 6889 |
. . . . . . . . 9
β’ (π = (πβπ‘) β (πβ1) = ((πβπ‘)β1)) |
43 | 42 | eqeq1d 2732 |
. . . . . . . 8
β’ (π = (πβπ‘) β ((πβ1) = (π¦βπ‘) β ((πβπ‘)β1) = (π¦βπ‘))) |
44 | 41, 43 | anbi12d 629 |
. . . . . . 7
β’ (π = (πβπ‘) β (((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘)) β (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘)))) |
45 | 39, 44 | anbi12d 629 |
. . . . . 6
β’ (π = (πβπ‘) β ((π β (II Cn (πΉβπ‘)) β§ ((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘))) β ((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) |
46 | 38, 45 | ac6s2 10483 |
. . . . 5
β’
(βπ‘ β (
I βπ΄)βπ(π β (II Cn (πΉβπ‘)) β§ ((πβ0) = (π₯βπ‘) β§ (πβ1) = (π¦βπ‘))) β βπ(π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) |
47 | 37, 46 | syl 17 |
. . . 4
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β βπ(π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) |
48 | | iitopon 24619 |
. . . . . . 7
β’ II β
(TopOnβ(0[,]1)) |
49 | 48 | a1i 11 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β II β
(TopOnβ(0[,]1))) |
50 | | simplll 771 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β π΄ β π) |
51 | 11 | adantr 479 |
. . . . . . 7
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β πΉ:π΄βΆPConn) |
52 | 51, 4 | syl 17 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β πΉ:π΄βΆTop) |
53 | 8 | adantr 479 |
. . . . . . . . . . . . 13
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β ( I βπ΄) = π΄) |
54 | 53 | eleq2d 2817 |
. . . . . . . . . . . 12
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β (π β ( I βπ΄) β π β π΄)) |
55 | 54 | biimpar 476 |
. . . . . . . . . . 11
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β π β ( I βπ΄)) |
56 | | simprr 769 |
. . . . . . . . . . . 12
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘)))) |
57 | | fveq2 6890 |
. . . . . . . . . . . . . . 15
β’ (π‘ = π β (πβπ‘) = (πβπ)) |
58 | | fveq2 6890 |
. . . . . . . . . . . . . . . 16
β’ (π‘ = π β (πΉβπ‘) = (πΉβπ)) |
59 | 58 | oveq2d 7427 |
. . . . . . . . . . . . . . 15
β’ (π‘ = π β (II Cn (πΉβπ‘)) = (II Cn (πΉβπ))) |
60 | 57, 59 | eleq12d 2825 |
. . . . . . . . . . . . . 14
β’ (π‘ = π β ((πβπ‘) β (II Cn (πΉβπ‘)) β (πβπ) β (II Cn (πΉβπ)))) |
61 | 57 | fveq1d 6892 |
. . . . . . . . . . . . . . . 16
β’ (π‘ = π β ((πβπ‘)β0) = ((πβπ)β0)) |
62 | | fveq2 6890 |
. . . . . . . . . . . . . . . 16
β’ (π‘ = π β (π₯βπ‘) = (π₯βπ)) |
63 | 61, 62 | eqeq12d 2746 |
. . . . . . . . . . . . . . 15
β’ (π‘ = π β (((πβπ‘)β0) = (π₯βπ‘) β ((πβπ)β0) = (π₯βπ))) |
64 | 57 | fveq1d 6892 |
. . . . . . . . . . . . . . . 16
β’ (π‘ = π β ((πβπ‘)β1) = ((πβπ)β1)) |
65 | | fveq2 6890 |
. . . . . . . . . . . . . . . 16
β’ (π‘ = π β (π¦βπ‘) = (π¦βπ)) |
66 | 64, 65 | eqeq12d 2746 |
. . . . . . . . . . . . . . 15
β’ (π‘ = π β (((πβπ‘)β1) = (π¦βπ‘) β ((πβπ)β1) = (π¦βπ))) |
67 | 63, 66 | anbi12d 629 |
. . . . . . . . . . . . . 14
β’ (π‘ = π β ((((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘)) β (((πβπ)β0) = (π₯βπ) β§ ((πβπ)β1) = (π¦βπ)))) |
68 | 60, 67 | anbi12d 629 |
. . . . . . . . . . . . 13
β’ (π‘ = π β (((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))) β ((πβπ) β (II Cn (πΉβπ)) β§ (((πβπ)β0) = (π₯βπ) β§ ((πβπ)β1) = (π¦βπ))))) |
69 | 68 | rspccva 3610 |
. . . . . . . . . . . 12
β’
((βπ‘ β (
I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))) β§ π β ( I βπ΄)) β ((πβπ) β (II Cn (πΉβπ)) β§ (((πβπ)β0) = (π₯βπ) β§ ((πβπ)β1) = (π¦βπ)))) |
70 | 56, 69 | sylan 578 |
. . . . . . . . . . 11
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β ( I βπ΄)) β ((πβπ) β (II Cn (πΉβπ)) β§ (((πβπ)β0) = (π₯βπ) β§ ((πβπ)β1) = (π¦βπ)))) |
71 | 55, 70 | syldan 589 |
. . . . . . . . . 10
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β ((πβπ) β (II Cn (πΉβπ)) β§ (((πβπ)β0) = (π₯βπ) β§ ((πβπ)β1) = (π¦βπ)))) |
72 | 71 | simpld 493 |
. . . . . . . . 9
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β (πβπ) β (II Cn (πΉβπ))) |
73 | | iiuni 24621 |
. . . . . . . . . 10
β’ (0[,]1) =
βͺ II |
74 | | eqid 2730 |
. . . . . . . . . 10
β’ βͺ (πΉβπ) = βͺ (πΉβπ) |
75 | 73, 74 | cnf 22970 |
. . . . . . . . 9
β’ ((πβπ) β (II Cn (πΉβπ)) β (πβπ):(0[,]1)βΆβͺ
(πΉβπ)) |
76 | 72, 75 | syl 17 |
. . . . . . . 8
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β (πβπ):(0[,]1)βΆβͺ
(πΉβπ)) |
77 | 76 | feqmptd 6959 |
. . . . . . 7
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β (πβπ) = (π§ β (0[,]1) β¦ ((πβπ)βπ§))) |
78 | 77, 72 | eqeltrrd 2832 |
. . . . . 6
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β (π§ β (0[,]1) β¦ ((πβπ)βπ§)) β (II Cn (πΉβπ))) |
79 | 14, 49, 50, 52, 78 | ptcn 23351 |
. . . . 5
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) β (II Cn
(βtβπΉ))) |
80 | 71 | simprd 494 |
. . . . . . . 8
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β (((πβπ)β0) = (π₯βπ) β§ ((πβπ)β1) = (π¦βπ))) |
81 | 80 | simpld 493 |
. . . . . . 7
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β ((πβπ)β0) = (π₯βπ)) |
82 | 81 | mpteq2dva 5247 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β (π β π΄ β¦ ((πβπ)β0)) = (π β π΄ β¦ (π₯βπ))) |
83 | | 0elunit 13450 |
. . . . . . 7
β’ 0 β
(0[,]1) |
84 | | mptexg 7224 |
. . . . . . . 8
β’ (π΄ β π β (π β π΄ β¦ ((πβπ)β0)) β V) |
85 | 50, 84 | syl 17 |
. . . . . . 7
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β (π β π΄ β¦ ((πβπ)β0)) β V) |
86 | | fveq2 6890 |
. . . . . . . . 9
β’ (π§ = 0 β ((πβπ)βπ§) = ((πβπ)β0)) |
87 | 86 | mpteq2dv 5249 |
. . . . . . . 8
β’ (π§ = 0 β (π β π΄ β¦ ((πβπ)βπ§)) = (π β π΄ β¦ ((πβπ)β0))) |
88 | | eqid 2730 |
. . . . . . . 8
β’ (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) = (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) |
89 | 87, 88 | fvmptg 6995 |
. . . . . . 7
β’ ((0
β (0[,]1) β§ (π
β π΄ β¦ ((πβπ)β0)) β V) β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β0) = (π β π΄ β¦ ((πβπ)β0))) |
90 | 83, 85, 89 | sylancr 585 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β0) = (π β π΄ β¦ ((πβπ)β0))) |
91 | 21 | simpld 493 |
. . . . . . . 8
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β π₯ Fn π΄) |
92 | 91 | adantr 479 |
. . . . . . 7
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β π₯ Fn π΄) |
93 | | dffn5 6949 |
. . . . . . 7
β’ (π₯ Fn π΄ β π₯ = (π β π΄ β¦ (π₯βπ))) |
94 | 92, 93 | sylib 217 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β π₯ = (π β π΄ β¦ (π₯βπ))) |
95 | 82, 90, 94 | 3eqtr4d 2780 |
. . . . 5
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β0) = π₯) |
96 | 80 | simprd 494 |
. . . . . . 7
β’
(((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β§ π β π΄) β ((πβπ)β1) = (π¦βπ)) |
97 | 96 | mpteq2dva 5247 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β (π β π΄ β¦ ((πβπ)β1)) = (π β π΄ β¦ (π¦βπ))) |
98 | | 1elunit 13451 |
. . . . . . 7
β’ 1 β
(0[,]1) |
99 | | mptexg 7224 |
. . . . . . . 8
β’ (π΄ β π β (π β π΄ β¦ ((πβπ)β1)) β V) |
100 | 50, 99 | syl 17 |
. . . . . . 7
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β (π β π΄ β¦ ((πβπ)β1)) β V) |
101 | | fveq2 6890 |
. . . . . . . . 9
β’ (π§ = 1 β ((πβπ)βπ§) = ((πβπ)β1)) |
102 | 101 | mpteq2dv 5249 |
. . . . . . . 8
β’ (π§ = 1 β (π β π΄ β¦ ((πβπ)βπ§)) = (π β π΄ β¦ ((πβπ)β1))) |
103 | 102, 88 | fvmptg 6995 |
. . . . . . 7
β’ ((1
β (0[,]1) β§ (π
β π΄ β¦ ((πβπ)β1)) β V) β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β1) = (π β π΄ β¦ ((πβπ)β1))) |
104 | 98, 100, 103 | sylancr 585 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β1) = (π β π΄ β¦ ((πβπ)β1))) |
105 | 28 | simpld 493 |
. . . . . . . 8
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β π¦ Fn π΄) |
106 | 105 | adantr 479 |
. . . . . . 7
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β π¦ Fn π΄) |
107 | | dffn5 6949 |
. . . . . . 7
β’ (π¦ Fn π΄ β π¦ = (π β π΄ β¦ (π¦βπ))) |
108 | 106, 107 | sylib 217 |
. . . . . 6
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β π¦ = (π β π΄ β¦ (π¦βπ))) |
109 | 97, 104, 108 | 3eqtr4d 2780 |
. . . . 5
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β1) = π¦) |
110 | | fveq1 6889 |
. . . . . . . 8
β’ (π = (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) β (πβ0) = ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β0)) |
111 | 110 | eqeq1d 2732 |
. . . . . . 7
β’ (π = (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) β ((πβ0) = π₯ β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β0) = π₯)) |
112 | | fveq1 6889 |
. . . . . . . 8
β’ (π = (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) β (πβ1) = ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β1)) |
113 | 112 | eqeq1d 2732 |
. . . . . . 7
β’ (π = (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) β ((πβ1) = π¦ β ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β1) = π¦)) |
114 | 111, 113 | anbi12d 629 |
. . . . . 6
β’ (π = (π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) β (((πβ0) = π₯ β§ (πβ1) = π¦) β (((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β0) = π₯ β§ ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β1) = π¦))) |
115 | 114 | rspcev 3611 |
. . . . 5
β’ (((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§))) β (II Cn
(βtβπΉ)) β§ (((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β0) = π₯ β§ ((π§ β (0[,]1) β¦ (π β π΄ β¦ ((πβπ)βπ§)))β1) = π¦)) β βπ β (II Cn
(βtβπΉ))((πβ0) = π₯ β§ (πβ1) = π¦)) |
116 | 79, 95, 109, 115 | syl12anc 833 |
. . . 4
β’ ((((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β§ (π Fn ( I βπ΄) β§ βπ‘ β ( I βπ΄)((πβπ‘) β (II Cn (πΉβπ‘)) β§ (((πβπ‘)β0) = (π₯βπ‘) β§ ((πβπ‘)β1) = (π¦βπ‘))))) β βπ β (II Cn
(βtβπΉ))((πβ0) = π₯ β§ (πβ1) = π¦)) |
117 | 47, 116 | exlimddv 1936 |
. . 3
β’ (((π΄ β π β§ πΉ:π΄βΆPConn) β§ (π₯ β βͺ
(βtβπΉ) β§ π¦ β βͺ
(βtβπΉ))) β βπ β (II Cn
(βtβπΉ))((πβ0) = π₯ β§ (πβ1) = π¦)) |
118 | 117 | ralrimivva 3198 |
. 2
β’ ((π΄ β π β§ πΉ:π΄βΆPConn) β βπ₯ β βͺ (βtβπΉ)βπ¦ β βͺ
(βtβπΉ)βπ β (II Cn
(βtβπΉ))((πβ0) = π₯ β§ (πβ1) = π¦)) |
119 | | eqid 2730 |
. . 3
β’ βͺ (βtβπΉ) = βͺ
(βtβπΉ) |
120 | 119 | ispconn 34512 |
. 2
β’
((βtβπΉ) β PConn β
((βtβπΉ) β Top β§ βπ₯ β βͺ (βtβπΉ)βπ¦ β βͺ
(βtβπΉ)βπ β (II Cn
(βtβπΉ))((πβ0) = π₯ β§ (πβ1) = π¦))) |
121 | 6, 118, 120 | sylanbrc 581 |
1
β’ ((π΄ β π β§ πΉ:π΄βΆPConn) β
(βtβπΉ) β PConn) |