Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptpconn Structured version   Visualization version   GIF version

Theorem ptpconn 35238
Description: The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
ptpconn ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)

Proof of Theorem ptpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 35230 . . . . 5 (𝑥 ∈ PConn → 𝑥 ∈ Top)
21ssriv 3987 . . . 4 PConn ⊆ Top
3 fss 6752 . . . 4 ((𝐹:𝐴⟶PConn ∧ PConn ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 691 . . 3 (𝐹:𝐴⟶PConn → 𝐹:𝐴⟶Top)
5 pttop 23590 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 593 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ Top)
7 fvi 6985 . . . . . . . . . 10 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
87ad2antrr 726 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ( I ‘𝐴) = 𝐴)
98eleq2d 2827 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑡 ∈ ( I ‘𝐴) ↔ 𝑡𝐴))
109biimpa 476 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → 𝑡𝐴)
11 simplr 769 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝐹:𝐴⟶PConn)
1211ffvelcdmda 7104 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝐹𝑡) ∈ PConn)
13 simprl 771 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
14 eqid 2737 . . . . . . . . . . . . . . . 16 (∏t𝐹) = (∏t𝐹)
1514ptuni 23602 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
164, 15sylan2 593 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶PConn) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1716adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1813, 17eleqtrrd 2844 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑡𝐴 (𝐹𝑡))
19 vex 3484 . . . . . . . . . . . . 13 𝑥 ∈ V
2019elixp 8944 . . . . . . . . . . . 12 (𝑥X𝑡𝐴 (𝐹𝑡) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2118, 20sylib 218 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2221simprd 495 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡))
2322r19.21bi 3251 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑥𝑡) ∈ (𝐹𝑡))
24 simprr 773 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
2524, 17eleqtrrd 2844 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑡𝐴 (𝐹𝑡))
26 vex 3484 . . . . . . . . . . . . 13 𝑦 ∈ V
2726elixp 8944 . . . . . . . . . . . 12 (𝑦X𝑡𝐴 (𝐹𝑡) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2825, 27sylib 218 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2928simprd 495 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡))
3029r19.21bi 3251 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑦𝑡) ∈ (𝐹𝑡))
31 eqid 2737 . . . . . . . . . 10 (𝐹𝑡) = (𝐹𝑡)
3231pconncn 35229 . . . . . . . . 9 (((𝐹𝑡) ∈ PConn ∧ (𝑥𝑡) ∈ (𝐹𝑡) ∧ (𝑦𝑡) ∈ (𝐹𝑡)) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
3312, 23, 30, 32syl3anc 1373 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
34 df-rex 3071 . . . . . . . 8 (∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3533, 34sylib 218 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3610, 35syldan 591 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3736ralrimiva 3146 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
38 fvex 6919 . . . . . 6 ( I ‘𝐴) ∈ V
39 eleq1 2829 . . . . . . 7 (𝑓 = (𝑔𝑡) → (𝑓 ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑡) ∈ (II Cn (𝐹𝑡))))
40 fveq1 6905 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘0) = ((𝑔𝑡)‘0))
4140eqeq1d 2739 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘0) = (𝑥𝑡) ↔ ((𝑔𝑡)‘0) = (𝑥𝑡)))
42 fveq1 6905 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘1) = ((𝑔𝑡)‘1))
4342eqeq1d 2739 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘1) = (𝑦𝑡) ↔ ((𝑔𝑡)‘1) = (𝑦𝑡)))
4441, 43anbi12d 632 . . . . . . 7 (𝑓 = (𝑔𝑡) → (((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
4539, 44anbi12d 632 . . . . . 6 (𝑓 = (𝑔𝑡) → ((𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) ↔ ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4638, 45ac6s2 10526 . . . . 5 (∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4737, 46syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
48 iitopon 24905 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
4948a1i 11 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → II ∈ (TopOn‘(0[,]1)))
50 simplll 775 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐴𝑉)
5111adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶PConn)
5251, 4syl 17 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶Top)
538adantr 480 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ( I ‘𝐴) = 𝐴)
5453eleq2d 2827 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖 ∈ ( I ‘𝐴) ↔ 𝑖𝐴))
5554biimpar 477 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → 𝑖 ∈ ( I ‘𝐴))
56 simprr 773 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
57 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (𝑔𝑡) = (𝑔𝑖))
58 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝐹𝑡) = (𝐹𝑖))
5958oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (II Cn (𝐹𝑡)) = (II Cn (𝐹𝑖)))
6057, 59eleq12d 2835 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑖) ∈ (II Cn (𝐹𝑖))))
6157fveq1d 6908 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘0) = ((𝑔𝑖)‘0))
62 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑥𝑡) = (𝑥𝑖))
6361, 62eqeq12d 2753 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘0) = (𝑥𝑡) ↔ ((𝑔𝑖)‘0) = (𝑥𝑖)))
6457fveq1d 6908 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘1) = ((𝑔𝑖)‘1))
65 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑦𝑡) = (𝑦𝑖))
6664, 65eqeq12d 2753 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘1) = (𝑦𝑡) ↔ ((𝑔𝑖)‘1) = (𝑦𝑖)))
6763, 66anbi12d 632 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)) ↔ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
6860, 67anbi12d 632 . . . . . . . . . . . . 13 (𝑡 = 𝑖 → (((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ↔ ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))))
6968rspccva 3621 . . . . . . . . . . . 12 ((∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7056, 69sylan 580 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7155, 70syldan 591 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7271simpld 494 . . . . . . . . 9 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) ∈ (II Cn (𝐹𝑖)))
73 iiuni 24907 . . . . . . . . . 10 (0[,]1) = II
74 eqid 2737 . . . . . . . . . 10 (𝐹𝑖) = (𝐹𝑖)
7573, 74cnf 23254 . . . . . . . . 9 ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7672, 75syl 17 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7776feqmptd 6977 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) = (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)))
7877, 72eqeltrrd 2842 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)) ∈ (II Cn (𝐹𝑖)))
7914, 49, 50, 52, 78ptcn 23635 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)))
8071simprd 495 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))
8180simpld 494 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘0) = (𝑥𝑖))
8281mpteq2dva 5242 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) = (𝑖𝐴 ↦ (𝑥𝑖)))
83 0elunit 13509 . . . . . . 7 0 ∈ (0[,]1)
84 mptexg 7241 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
8550, 84syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
86 fveq2 6906 . . . . . . . . 9 (𝑧 = 0 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘0))
8786mpteq2dv 5244 . . . . . . . 8 (𝑧 = 0 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
88 eqid 2737 . . . . . . . 8 (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))
8987, 88fvmptg 7014 . . . . . . 7 ((0 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9083, 85, 89sylancr 587 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9121simpld 494 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
9291adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 Fn 𝐴)
93 dffn5 6967 . . . . . . 7 (𝑥 Fn 𝐴𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9492, 93sylib 218 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9582, 90, 943eqtr4d 2787 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥)
9680simprd 495 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘1) = (𝑦𝑖))
9796mpteq2dva 5242 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) = (𝑖𝐴 ↦ (𝑦𝑖)))
98 1elunit 13510 . . . . . . 7 1 ∈ (0[,]1)
99 mptexg 7241 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
10050, 99syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
101 fveq2 6906 . . . . . . . . 9 (𝑧 = 1 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘1))
102101mpteq2dv 5244 . . . . . . . 8 (𝑧 = 1 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
103102, 88fvmptg 7014 . . . . . . 7 ((1 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10498, 100, 103sylancr 587 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10528simpld 494 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
106105adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 Fn 𝐴)
107 dffn5 6967 . . . . . . 7 (𝑦 Fn 𝐴𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
108106, 107sylib 218 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
10997, 104, 1083eqtr4d 2787 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)
110 fveq1 6905 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0))
111110eqeq1d 2739 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥))
112 fveq1 6905 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1))
113112eqeq1d 2739 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦))
114111, 113anbi12d 632 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)))
115114rspcev 3622 . . . . 5 (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)) ∧ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11679, 95, 109, 115syl12anc 837 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11747, 116exlimddv 1935 . . 3 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
118117ralrimivva 3202 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
119 eqid 2737 . . 3 (∏t𝐹) = (∏t𝐹)
120119ispconn 35228 . 2 ((∏t𝐹) ∈ PConn ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1216, 118, 120sylanbrc 583 1 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951   cuni 4907  cmpt 5225   I cid 5577   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Xcixp 8937  0cc0 11155  1c1 11156  [,]cicc 13390  tcpt 17483  Topctop 22899  TopOnctopon 22916   Cn ccn 23232  IIcii 24901  PConncpconn 35224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-r1 9804  df-rank 9805  df-card 9979  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-topgen 17488  df-pt 17489  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-cnp 23236  df-ii 24903  df-pconn 35226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator