Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptpconn Structured version   Visualization version   GIF version

Theorem ptpconn 35218
Description: The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
ptpconn ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)

Proof of Theorem ptpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 35210 . . . . 5 (𝑥 ∈ PConn → 𝑥 ∈ Top)
21ssriv 3999 . . . 4 PConn ⊆ Top
3 fss 6753 . . . 4 ((𝐹:𝐴⟶PConn ∧ PConn ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 691 . . 3 (𝐹:𝐴⟶PConn → 𝐹:𝐴⟶Top)
5 pttop 23606 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 593 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ Top)
7 fvi 6985 . . . . . . . . . 10 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
87ad2antrr 726 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ( I ‘𝐴) = 𝐴)
98eleq2d 2825 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑡 ∈ ( I ‘𝐴) ↔ 𝑡𝐴))
109biimpa 476 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → 𝑡𝐴)
11 simplr 769 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝐹:𝐴⟶PConn)
1211ffvelcdmda 7104 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝐹𝑡) ∈ PConn)
13 simprl 771 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
14 eqid 2735 . . . . . . . . . . . . . . . 16 (∏t𝐹) = (∏t𝐹)
1514ptuni 23618 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
164, 15sylan2 593 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶PConn) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1716adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1813, 17eleqtrrd 2842 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑡𝐴 (𝐹𝑡))
19 vex 3482 . . . . . . . . . . . . 13 𝑥 ∈ V
2019elixp 8943 . . . . . . . . . . . 12 (𝑥X𝑡𝐴 (𝐹𝑡) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2118, 20sylib 218 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2221simprd 495 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡))
2322r19.21bi 3249 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑥𝑡) ∈ (𝐹𝑡))
24 simprr 773 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
2524, 17eleqtrrd 2842 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑡𝐴 (𝐹𝑡))
26 vex 3482 . . . . . . . . . . . . 13 𝑦 ∈ V
2726elixp 8943 . . . . . . . . . . . 12 (𝑦X𝑡𝐴 (𝐹𝑡) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2825, 27sylib 218 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2928simprd 495 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡))
3029r19.21bi 3249 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑦𝑡) ∈ (𝐹𝑡))
31 eqid 2735 . . . . . . . . . 10 (𝐹𝑡) = (𝐹𝑡)
3231pconncn 35209 . . . . . . . . 9 (((𝐹𝑡) ∈ PConn ∧ (𝑥𝑡) ∈ (𝐹𝑡) ∧ (𝑦𝑡) ∈ (𝐹𝑡)) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
3312, 23, 30, 32syl3anc 1370 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
34 df-rex 3069 . . . . . . . 8 (∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3533, 34sylib 218 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3610, 35syldan 591 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3736ralrimiva 3144 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
38 fvex 6920 . . . . . 6 ( I ‘𝐴) ∈ V
39 eleq1 2827 . . . . . . 7 (𝑓 = (𝑔𝑡) → (𝑓 ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑡) ∈ (II Cn (𝐹𝑡))))
40 fveq1 6906 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘0) = ((𝑔𝑡)‘0))
4140eqeq1d 2737 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘0) = (𝑥𝑡) ↔ ((𝑔𝑡)‘0) = (𝑥𝑡)))
42 fveq1 6906 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘1) = ((𝑔𝑡)‘1))
4342eqeq1d 2737 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘1) = (𝑦𝑡) ↔ ((𝑔𝑡)‘1) = (𝑦𝑡)))
4441, 43anbi12d 632 . . . . . . 7 (𝑓 = (𝑔𝑡) → (((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
4539, 44anbi12d 632 . . . . . 6 (𝑓 = (𝑔𝑡) → ((𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) ↔ ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4638, 45ac6s2 10524 . . . . 5 (∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4737, 46syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
48 iitopon 24919 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
4948a1i 11 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → II ∈ (TopOn‘(0[,]1)))
50 simplll 775 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐴𝑉)
5111adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶PConn)
5251, 4syl 17 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶Top)
538adantr 480 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ( I ‘𝐴) = 𝐴)
5453eleq2d 2825 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖 ∈ ( I ‘𝐴) ↔ 𝑖𝐴))
5554biimpar 477 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → 𝑖 ∈ ( I ‘𝐴))
56 simprr 773 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
57 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (𝑔𝑡) = (𝑔𝑖))
58 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝐹𝑡) = (𝐹𝑖))
5958oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (II Cn (𝐹𝑡)) = (II Cn (𝐹𝑖)))
6057, 59eleq12d 2833 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑖) ∈ (II Cn (𝐹𝑖))))
6157fveq1d 6909 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘0) = ((𝑔𝑖)‘0))
62 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑥𝑡) = (𝑥𝑖))
6361, 62eqeq12d 2751 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘0) = (𝑥𝑡) ↔ ((𝑔𝑖)‘0) = (𝑥𝑖)))
6457fveq1d 6909 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘1) = ((𝑔𝑖)‘1))
65 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑦𝑡) = (𝑦𝑖))
6664, 65eqeq12d 2751 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘1) = (𝑦𝑡) ↔ ((𝑔𝑖)‘1) = (𝑦𝑖)))
6763, 66anbi12d 632 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)) ↔ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
6860, 67anbi12d 632 . . . . . . . . . . . . 13 (𝑡 = 𝑖 → (((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ↔ ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))))
6968rspccva 3621 . . . . . . . . . . . 12 ((∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7056, 69sylan 580 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7155, 70syldan 591 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7271simpld 494 . . . . . . . . 9 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) ∈ (II Cn (𝐹𝑖)))
73 iiuni 24921 . . . . . . . . . 10 (0[,]1) = II
74 eqid 2735 . . . . . . . . . 10 (𝐹𝑖) = (𝐹𝑖)
7573, 74cnf 23270 . . . . . . . . 9 ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7672, 75syl 17 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7776feqmptd 6977 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) = (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)))
7877, 72eqeltrrd 2840 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)) ∈ (II Cn (𝐹𝑖)))
7914, 49, 50, 52, 78ptcn 23651 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)))
8071simprd 495 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))
8180simpld 494 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘0) = (𝑥𝑖))
8281mpteq2dva 5248 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) = (𝑖𝐴 ↦ (𝑥𝑖)))
83 0elunit 13506 . . . . . . 7 0 ∈ (0[,]1)
84 mptexg 7241 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
8550, 84syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
86 fveq2 6907 . . . . . . . . 9 (𝑧 = 0 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘0))
8786mpteq2dv 5250 . . . . . . . 8 (𝑧 = 0 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
88 eqid 2735 . . . . . . . 8 (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))
8987, 88fvmptg 7014 . . . . . . 7 ((0 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9083, 85, 89sylancr 587 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9121simpld 494 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
9291adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 Fn 𝐴)
93 dffn5 6967 . . . . . . 7 (𝑥 Fn 𝐴𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9492, 93sylib 218 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9582, 90, 943eqtr4d 2785 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥)
9680simprd 495 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘1) = (𝑦𝑖))
9796mpteq2dva 5248 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) = (𝑖𝐴 ↦ (𝑦𝑖)))
98 1elunit 13507 . . . . . . 7 1 ∈ (0[,]1)
99 mptexg 7241 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
10050, 99syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
101 fveq2 6907 . . . . . . . . 9 (𝑧 = 1 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘1))
102101mpteq2dv 5250 . . . . . . . 8 (𝑧 = 1 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
103102, 88fvmptg 7014 . . . . . . 7 ((1 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10498, 100, 103sylancr 587 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10528simpld 494 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
106105adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 Fn 𝐴)
107 dffn5 6967 . . . . . . 7 (𝑦 Fn 𝐴𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
108106, 107sylib 218 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
10997, 104, 1083eqtr4d 2785 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)
110 fveq1 6906 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0))
111110eqeq1d 2737 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥))
112 fveq1 6906 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1))
113112eqeq1d 2737 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦))
114111, 113anbi12d 632 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)))
115114rspcev 3622 . . . . 5 (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)) ∧ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11679, 95, 109, 115syl12anc 837 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11747, 116exlimddv 1933 . . 3 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
118117ralrimivva 3200 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
119 eqid 2735 . . 3 (∏t𝐹) = (∏t𝐹)
120119ispconn 35208 . 2 ((∏t𝐹) ∈ PConn ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1216, 118, 120sylanbrc 583 1 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   cuni 4912  cmpt 5231   I cid 5582   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Xcixp 8936  0cc0 11153  1c1 11154  [,]cicc 13387  tcpt 17485  Topctop 22915  TopOnctopon 22932   Cn ccn 23248  IIcii 24915  PConncpconn 35204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-r1 9802  df-rank 9803  df-card 9977  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-topgen 17490  df-pt 17491  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cn 23251  df-cnp 23252  df-ii 24917  df-pconn 35206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator