Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptpconn Structured version   Visualization version   GIF version

Theorem ptpconn 33095
Description: The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
ptpconn ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)

Proof of Theorem ptpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 33087 . . . . 5 (𝑥 ∈ PConn → 𝑥 ∈ Top)
21ssriv 3921 . . . 4 PConn ⊆ Top
3 fss 6601 . . . 4 ((𝐹:𝐴⟶PConn ∧ PConn ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 687 . . 3 (𝐹:𝐴⟶PConn → 𝐹:𝐴⟶Top)
5 pttop 22641 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 592 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ Top)
7 fvi 6826 . . . . . . . . . 10 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
87ad2antrr 722 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ( I ‘𝐴) = 𝐴)
98eleq2d 2824 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑡 ∈ ( I ‘𝐴) ↔ 𝑡𝐴))
109biimpa 476 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → 𝑡𝐴)
11 simplr 765 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝐹:𝐴⟶PConn)
1211ffvelrnda 6943 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝐹𝑡) ∈ PConn)
13 simprl 767 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
14 eqid 2738 . . . . . . . . . . . . . . . 16 (∏t𝐹) = (∏t𝐹)
1514ptuni 22653 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
164, 15sylan2 592 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶PConn) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1716adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑡𝐴 (𝐹𝑡) = (∏t𝐹))
1813, 17eleqtrrd 2842 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑡𝐴 (𝐹𝑡))
19 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
2019elixp 8650 . . . . . . . . . . . 12 (𝑥X𝑡𝐴 (𝐹𝑡) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2118, 20sylib 217 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡)))
2221simprd 495 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑥𝑡) ∈ (𝐹𝑡))
2322r19.21bi 3132 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑥𝑡) ∈ (𝐹𝑡))
24 simprr 769 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
2524, 17eleqtrrd 2842 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑡𝐴 (𝐹𝑡))
26 vex 3426 . . . . . . . . . . . . 13 𝑦 ∈ V
2726elixp 8650 . . . . . . . . . . . 12 (𝑦X𝑡𝐴 (𝐹𝑡) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2825, 27sylib 217 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑦 Fn 𝐴 ∧ ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡)))
2928simprd 495 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡𝐴 (𝑦𝑡) ∈ (𝐹𝑡))
3029r19.21bi 3132 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → (𝑦𝑡) ∈ (𝐹𝑡))
31 eqid 2738 . . . . . . . . . 10 (𝐹𝑡) = (𝐹𝑡)
3231pconncn 33086 . . . . . . . . 9 (((𝐹𝑡) ∈ PConn ∧ (𝑥𝑡) ∈ (𝐹𝑡) ∧ (𝑦𝑡) ∈ (𝐹𝑡)) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
3312, 23, 30, 32syl3anc 1369 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)))
34 df-rex 3069 . . . . . . . 8 (∃𝑓 ∈ (II Cn (𝐹𝑡))((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3533, 34sylib 217 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡𝐴) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3610, 35syldan 590 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑡 ∈ ( I ‘𝐴)) → ∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
3736ralrimiva 3107 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))))
38 fvex 6769 . . . . . 6 ( I ‘𝐴) ∈ V
39 eleq1 2826 . . . . . . 7 (𝑓 = (𝑔𝑡) → (𝑓 ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑡) ∈ (II Cn (𝐹𝑡))))
40 fveq1 6755 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘0) = ((𝑔𝑡)‘0))
4140eqeq1d 2740 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘0) = (𝑥𝑡) ↔ ((𝑔𝑡)‘0) = (𝑥𝑡)))
42 fveq1 6755 . . . . . . . . 9 (𝑓 = (𝑔𝑡) → (𝑓‘1) = ((𝑔𝑡)‘1))
4342eqeq1d 2740 . . . . . . . 8 (𝑓 = (𝑔𝑡) → ((𝑓‘1) = (𝑦𝑡) ↔ ((𝑔𝑡)‘1) = (𝑦𝑡)))
4441, 43anbi12d 630 . . . . . . 7 (𝑓 = (𝑔𝑡) → (((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡)) ↔ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
4539, 44anbi12d 630 . . . . . 6 (𝑓 = (𝑔𝑡) → ((𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) ↔ ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4638, 45ac6s2 10173 . . . . 5 (∀𝑡 ∈ ( I ‘𝐴)∃𝑓(𝑓 ∈ (II Cn (𝐹𝑡)) ∧ ((𝑓‘0) = (𝑥𝑡) ∧ (𝑓‘1) = (𝑦𝑡))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
4737, 46syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑔(𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)))))
48 iitopon 23948 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
4948a1i 11 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → II ∈ (TopOn‘(0[,]1)))
50 simplll 771 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐴𝑉)
5111adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶PConn)
5251, 4syl 17 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝐹:𝐴⟶Top)
538adantr 480 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ( I ‘𝐴) = 𝐴)
5453eleq2d 2824 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖 ∈ ( I ‘𝐴) ↔ 𝑖𝐴))
5554biimpar 477 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → 𝑖 ∈ ( I ‘𝐴))
56 simprr 769 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))
57 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (𝑔𝑡) = (𝑔𝑖))
58 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝐹𝑡) = (𝐹𝑖))
5958oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (II Cn (𝐹𝑡)) = (II Cn (𝐹𝑖)))
6057, 59eleq12d 2833 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ↔ (𝑔𝑖) ∈ (II Cn (𝐹𝑖))))
6157fveq1d 6758 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘0) = ((𝑔𝑖)‘0))
62 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑥𝑡) = (𝑥𝑖))
6361, 62eqeq12d 2754 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘0) = (𝑥𝑡) ↔ ((𝑔𝑖)‘0) = (𝑥𝑖)))
6457fveq1d 6758 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → ((𝑔𝑡)‘1) = ((𝑔𝑖)‘1))
65 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑖 → (𝑦𝑡) = (𝑦𝑖))
6664, 65eqeq12d 2754 . . . . . . . . . . . . . . 15 (𝑡 = 𝑖 → (((𝑔𝑡)‘1) = (𝑦𝑡) ↔ ((𝑔𝑖)‘1) = (𝑦𝑖)))
6763, 66anbi12d 630 . . . . . . . . . . . . . 14 (𝑡 = 𝑖 → ((((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡)) ↔ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
6860, 67anbi12d 630 . . . . . . . . . . . . 13 (𝑡 = 𝑖 → (((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ↔ ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))))
6968rspccva 3551 . . . . . . . . . . . 12 ((∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7056, 69sylan 579 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖 ∈ ( I ‘𝐴)) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7155, 70syldan 590 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) ∧ (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖))))
7271simpld 494 . . . . . . . . 9 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) ∈ (II Cn (𝐹𝑖)))
73 iiuni 23950 . . . . . . . . . 10 (0[,]1) = II
74 eqid 2738 . . . . . . . . . 10 (𝐹𝑖) = (𝐹𝑖)
7573, 74cnf 22305 . . . . . . . . 9 ((𝑔𝑖) ∈ (II Cn (𝐹𝑖)) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7672, 75syl 17 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖):(0[,]1)⟶ (𝐹𝑖))
7776feqmptd 6819 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑔𝑖) = (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)))
7877, 72eqeltrrd 2840 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (𝑧 ∈ (0[,]1) ↦ ((𝑔𝑖)‘𝑧)) ∈ (II Cn (𝐹𝑖)))
7914, 49, 50, 52, 78ptcn 22686 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)))
8071simprd 495 . . . . . . . 8 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → (((𝑔𝑖)‘0) = (𝑥𝑖) ∧ ((𝑔𝑖)‘1) = (𝑦𝑖)))
8180simpld 494 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘0) = (𝑥𝑖))
8281mpteq2dva 5170 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) = (𝑖𝐴 ↦ (𝑥𝑖)))
83 0elunit 13130 . . . . . . 7 0 ∈ (0[,]1)
84 mptexg 7079 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
8550, 84syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V)
86 fveq2 6756 . . . . . . . . 9 (𝑧 = 0 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘0))
8786mpteq2dv 5172 . . . . . . . 8 (𝑧 = 0 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
88 eqid 2738 . . . . . . . 8 (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))
8987, 88fvmptg 6855 . . . . . . 7 ((0 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘0)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9083, 85, 89sylancr 586 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = (𝑖𝐴 ↦ ((𝑔𝑖)‘0)))
9121simpld 494 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
9291adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 Fn 𝐴)
93 dffn5 6810 . . . . . . 7 (𝑥 Fn 𝐴𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9492, 93sylib 217 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑥 = (𝑖𝐴 ↦ (𝑥𝑖)))
9582, 90, 943eqtr4d 2788 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥)
9680simprd 495 . . . . . . 7 (((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) ∧ 𝑖𝐴) → ((𝑔𝑖)‘1) = (𝑦𝑖))
9796mpteq2dva 5170 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) = (𝑖𝐴 ↦ (𝑦𝑖)))
98 1elunit 13131 . . . . . . 7 1 ∈ (0[,]1)
99 mptexg 7079 . . . . . . . 8 (𝐴𝑉 → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
10050, 99syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V)
101 fveq2 6756 . . . . . . . . 9 (𝑧 = 1 → ((𝑔𝑖)‘𝑧) = ((𝑔𝑖)‘1))
102101mpteq2dv 5172 . . . . . . . 8 (𝑧 = 1 → (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
103102, 88fvmptg 6855 . . . . . . 7 ((1 ∈ (0[,]1) ∧ (𝑖𝐴 ↦ ((𝑔𝑖)‘1)) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10498, 100, 103sylancr 586 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = (𝑖𝐴 ↦ ((𝑔𝑖)‘1)))
10528simpld 494 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
106105adantr 480 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 Fn 𝐴)
107 dffn5 6810 . . . . . . 7 (𝑦 Fn 𝐴𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
108106, 107sylib 217 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → 𝑦 = (𝑖𝐴 ↦ (𝑦𝑖)))
10997, 104, 1083eqtr4d 2788 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)
110 fveq1 6755 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0))
111110eqeq1d 2740 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥))
112 fveq1 6755 . . . . . . . 8 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1))
113112eqeq1d 2740 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦))
114111, 113anbi12d 630 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)))
115114rspcev 3552 . . . . 5 (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧))) ∈ (II Cn (∏t𝐹)) ∧ (((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ (𝑖𝐴 ↦ ((𝑔𝑖)‘𝑧)))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11679, 95, 109, 115syl12anc 833 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑔 Fn ( I ‘𝐴) ∧ ∀𝑡 ∈ ( I ‘𝐴)((𝑔𝑡) ∈ (II Cn (𝐹𝑡)) ∧ (((𝑔𝑡)‘0) = (𝑥𝑡) ∧ ((𝑔𝑡)‘1) = (𝑦𝑡))))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11747, 116exlimddv 1939 . . 3 (((𝐴𝑉𝐹:𝐴⟶PConn) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
118117ralrimivva 3114 . 2 ((𝐴𝑉𝐹:𝐴⟶PConn) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
119 eqid 2738 . . 3 (∏t𝐹) = (∏t𝐹)
120119ispconn 33085 . 2 ((∏t𝐹) ∈ PConn ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)∃𝑓 ∈ (II Cn (∏t𝐹))((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1216, 118, 120sylanbrc 582 1 ((𝐴𝑉𝐹:𝐴⟶PConn) → (∏t𝐹) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   cuni 4836  cmpt 5153   I cid 5479   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Xcixp 8643  0cc0 10802  1c1 10803  [,]cicc 13011  tcpt 17066  Topctop 21950  TopOnctopon 21967   Cn ccn 22283  IIcii 23944  PConncpconn 33081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-r1 9453  df-rank 9454  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-pt 17072  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-cnp 22287  df-ii 23946  df-pconn 33083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator