Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpconn Structured version   Visualization version   GIF version

Theorem cnpconn 33092
Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
cnpconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpconn ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn)

Proof of Theorem cnpconn
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 22300 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1133 . 2 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 eqid 2738 . . . . . . . . 9 𝐽 = 𝐽
43pconncn 33086 . . . . . . . 8 ((𝐽 ∈ PConn ∧ 𝑢 𝐽𝑣 𝐽) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
543expb 1118 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
653ad2antl1 1183 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
7 simprl 767 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔 ∈ (II Cn 𝐽))
8 simpll3 1212 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝐹 ∈ (𝐽 Cn 𝐾))
9 cnco 22325 . . . . . . . 8 ((𝑔 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑔) ∈ (II Cn 𝐾))
107, 8, 9syl2anc 583 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹𝑔) ∈ (II Cn 𝐾))
11 iiuni 23950 . . . . . . . . . . 11 (0[,]1) = II
1211, 3cnf 22305 . . . . . . . . . 10 (𝑔 ∈ (II Cn 𝐽) → 𝑔:(0[,]1)⟶ 𝐽)
137, 12syl 17 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔:(0[,]1)⟶ 𝐽)
14 0elunit 13130 . . . . . . . . 9 0 ∈ (0[,]1)
15 fvco3 6849 . . . . . . . . 9 ((𝑔:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
1613, 14, 15sylancl 585 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
17 simprrl 777 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘0) = 𝑢)
1817fveq2d 6760 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘0)) = (𝐹𝑢))
1916, 18eqtrd 2778 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘0) = (𝐹𝑢))
20 1elunit 13131 . . . . . . . . 9 1 ∈ (0[,]1)
21 fvco3 6849 . . . . . . . . 9 ((𝑔:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
2213, 20, 21sylancl 585 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
23 simprrr 778 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘1) = 𝑣)
2423fveq2d 6760 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘1)) = (𝐹𝑣))
2522, 24eqtrd 2778 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘1) = (𝐹𝑣))
26 fveq1 6755 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘0) = ((𝐹𝑔)‘0))
2726eqeq1d 2740 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓‘0) = (𝐹𝑢) ↔ ((𝐹𝑔)‘0) = (𝐹𝑢)))
28 fveq1 6755 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘1) = ((𝐹𝑔)‘1))
2928eqeq1d 2740 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓‘1) = (𝐹𝑣) ↔ ((𝐹𝑔)‘1) = (𝐹𝑣)))
3027, 29anbi12d 630 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ (((𝐹𝑔)‘0) = (𝐹𝑢) ∧ ((𝐹𝑔)‘1) = (𝐹𝑣))))
3130rspcev 3552 . . . . . . 7 (((𝐹𝑔) ∈ (II Cn 𝐾) ∧ (((𝐹𝑔)‘0) = (𝐹𝑢) ∧ ((𝐹𝑔)‘1) = (𝐹𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
3210, 19, 25, 31syl12anc 833 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
336, 32rexlimddv 3219 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
3433ralrimivva 3114 . . . 4 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 𝐽𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
35 cnpconn.2 . . . . . . . . 9 𝑌 = 𝐾
363, 35cnf 22305 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
37363ad2ant3 1133 . . . . . . 7 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
38 forn 6675 . . . . . . . 8 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
39383ad2ant2 1132 . . . . . . 7 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = 𝑌)
40 dffo2 6676 . . . . . . 7 (𝐹: 𝐽onto𝑌 ↔ (𝐹: 𝐽𝑌 ∧ ran 𝐹 = 𝑌))
4137, 39, 40sylanbrc 582 . . . . . 6 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽onto𝑌)
42 eqeq2 2750 . . . . . . . . 9 ((𝐹𝑣) = 𝑦 → ((𝑓‘1) = (𝐹𝑣) ↔ (𝑓‘1) = 𝑦))
4342anbi2d 628 . . . . . . . 8 ((𝐹𝑣) = 𝑦 → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4443rexbidv 3225 . . . . . . 7 ((𝐹𝑣) = 𝑦 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4544cbvfo 7141 . . . . . 6 (𝐹: 𝐽onto𝑌 → (∀𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4641, 45syl 17 . . . . 5 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4746ralbidv 3120 . . . 4 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 𝐽𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4834, 47mpbid 231 . . 3 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦))
49 eqeq2 2750 . . . . . . . 8 ((𝐹𝑢) = 𝑥 → ((𝑓‘0) = (𝐹𝑢) ↔ (𝑓‘0) = 𝑥))
5049anbi1d 629 . . . . . . 7 ((𝐹𝑢) = 𝑥 → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5150rexbidv 3225 . . . . . 6 ((𝐹𝑢) = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5251ralbidv 3120 . . . . 5 ((𝐹𝑢) = 𝑥 → (∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5352cbvfo 7141 . . . 4 (𝐹: 𝐽onto𝑌 → (∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5441, 53syl 17 . . 3 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5548, 54mpbid 231 . 2 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5635ispconn 33085 . 2 (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
572, 55, 56sylanbrc 582 1 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   cuni 4836  ran crn 5581  ccom 5584  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  [,]cicc 13011  Topctop 21950   Cn ccn 22283  IIcii 23944  PConncpconn 33081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-ii 23946  df-pconn 33083
This theorem is referenced by:  qtoppconn  33098
  Copyright terms: Public domain W3C validator