| Step | Hyp | Ref
| Expression |
| 1 | | cntop2 23249 |
. . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| 2 | 1 | 3ad2ant3 1136 |
. 2
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top) |
| 3 | | eqid 2737 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 4 | 3 | pconncn 35229 |
. . . . . . . 8
⊢ ((𝐽 ∈ PConn ∧ 𝑢 ∈ ∪ 𝐽
∧ 𝑣 ∈ ∪ 𝐽)
→ ∃𝑔 ∈ (II
Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣)) |
| 5 | 4 | 3expb 1121 |
. . . . . . 7
⊢ ((𝐽 ∈ PConn ∧ (𝑢 ∈ ∪ 𝐽
∧ 𝑣 ∈ ∪ 𝐽))
→ ∃𝑔 ∈ (II
Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣)) |
| 6 | 5 | 3ad2antl1 1186 |
. . . . . 6
⊢ (((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣)) |
| 7 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔 ∈ (II Cn 𝐽)) |
| 8 | | simpll3 1215 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 9 | | cnco 23274 |
. . . . . . . 8
⊢ ((𝑔 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ 𝑔) ∈ (II Cn 𝐾)) |
| 10 | 7, 8, 9 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹 ∘ 𝑔) ∈ (II Cn 𝐾)) |
| 11 | | iiuni 24907 |
. . . . . . . . . . 11
⊢ (0[,]1) =
∪ II |
| 12 | 11, 3 | cnf 23254 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (II Cn 𝐽) → 𝑔:(0[,]1)⟶∪
𝐽) |
| 13 | 7, 12 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔:(0[,]1)⟶∪
𝐽) |
| 14 | | 0elunit 13509 |
. . . . . . . . 9
⊢ 0 ∈
(0[,]1) |
| 15 | | fvco3 7008 |
. . . . . . . . 9
⊢ ((𝑔:(0[,]1)⟶∪ 𝐽
∧ 0 ∈ (0[,]1)) → ((𝐹 ∘ 𝑔)‘0) = (𝐹‘(𝑔‘0))) |
| 16 | 13, 14, 15 | sylancl 586 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹 ∘ 𝑔)‘0) = (𝐹‘(𝑔‘0))) |
| 17 | | simprrl 781 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘0) = 𝑢) |
| 18 | 17 | fveq2d 6910 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘0)) = (𝐹‘𝑢)) |
| 19 | 16, 18 | eqtrd 2777 |
. . . . . . 7
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹 ∘ 𝑔)‘0) = (𝐹‘𝑢)) |
| 20 | | 1elunit 13510 |
. . . . . . . . 9
⊢ 1 ∈
(0[,]1) |
| 21 | | fvco3 7008 |
. . . . . . . . 9
⊢ ((𝑔:(0[,]1)⟶∪ 𝐽
∧ 1 ∈ (0[,]1)) → ((𝐹 ∘ 𝑔)‘1) = (𝐹‘(𝑔‘1))) |
| 22 | 13, 20, 21 | sylancl 586 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹 ∘ 𝑔)‘1) = (𝐹‘(𝑔‘1))) |
| 23 | | simprrr 782 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘1) = 𝑣) |
| 24 | 23 | fveq2d 6910 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘1)) = (𝐹‘𝑣)) |
| 25 | 22, 24 | eqtrd 2777 |
. . . . . . 7
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹 ∘ 𝑔)‘1) = (𝐹‘𝑣)) |
| 26 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ 𝑔) → (𝑓‘0) = ((𝐹 ∘ 𝑔)‘0)) |
| 27 | 26 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ 𝑔) → ((𝑓‘0) = (𝐹‘𝑢) ↔ ((𝐹 ∘ 𝑔)‘0) = (𝐹‘𝑢))) |
| 28 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ 𝑔) → (𝑓‘1) = ((𝐹 ∘ 𝑔)‘1)) |
| 29 | 28 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ 𝑔) → ((𝑓‘1) = (𝐹‘𝑣) ↔ ((𝐹 ∘ 𝑔)‘1) = (𝐹‘𝑣))) |
| 30 | 27, 29 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ 𝑔) → (((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣)) ↔ (((𝐹 ∘ 𝑔)‘0) = (𝐹‘𝑢) ∧ ((𝐹 ∘ 𝑔)‘1) = (𝐹‘𝑣)))) |
| 31 | 30 | rspcev 3622 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝑔) ∈ (II Cn 𝐾) ∧ (((𝐹 ∘ 𝑔)‘0) = (𝐹‘𝑢) ∧ ((𝐹 ∘ 𝑔)‘1) = (𝐹‘𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣))) |
| 32 | 10, 19, 25, 31 | syl12anc 837 |
. . . . . 6
⊢ ((((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣))) |
| 33 | 6, 32 | rexlimddv 3161 |
. . . . 5
⊢ (((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣))) |
| 34 | 33 | ralrimivva 3202 |
. . . 4
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 ∈ ∪ 𝐽∀𝑣 ∈ ∪ 𝐽∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣))) |
| 35 | | cnpconn.2 |
. . . . . . . . 9
⊢ 𝑌 = ∪
𝐾 |
| 36 | 3, 35 | cnf 23254 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
| 37 | 36 | 3ad2ant3 1136 |
. . . . . . 7
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶𝑌) |
| 38 | | forn 6823 |
. . . . . . . 8
⊢ (𝐹:𝑋–onto→𝑌 → ran 𝐹 = 𝑌) |
| 39 | 38 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = 𝑌) |
| 40 | | dffo2 6824 |
. . . . . . 7
⊢ (𝐹:∪
𝐽–onto→𝑌 ↔ (𝐹:∪ 𝐽⟶𝑌 ∧ ran 𝐹 = 𝑌)) |
| 41 | 37, 39, 40 | sylanbrc 583 |
. . . . . 6
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→𝑌) |
| 42 | | eqeq2 2749 |
. . . . . . . . 9
⊢ ((𝐹‘𝑣) = 𝑦 → ((𝑓‘1) = (𝐹‘𝑣) ↔ (𝑓‘1) = 𝑦)) |
| 43 | 42 | anbi2d 630 |
. . . . . . . 8
⊢ ((𝐹‘𝑣) = 𝑦 → (((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣)) ↔ ((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦))) |
| 44 | 43 | rexbidv 3179 |
. . . . . . 7
⊢ ((𝐹‘𝑣) = 𝑦 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣)) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦))) |
| 45 | 44 | cbvfo 7309 |
. . . . . 6
⊢ (𝐹:∪
𝐽–onto→𝑌 → (∀𝑣 ∈ ∪ 𝐽∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣)) ↔ ∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦))) |
| 46 | 41, 45 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑣 ∈ ∪ 𝐽∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣)) ↔ ∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦))) |
| 47 | 46 | ralbidv 3178 |
. . . 4
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 ∈ ∪ 𝐽∀𝑣 ∈ ∪ 𝐽∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = (𝐹‘𝑣)) ↔ ∀𝑢 ∈ ∪ 𝐽∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦))) |
| 48 | 34, 47 | mpbid 232 |
. . 3
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 ∈ ∪ 𝐽∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦)) |
| 49 | | eqeq2 2749 |
. . . . . . . 8
⊢ ((𝐹‘𝑢) = 𝑥 → ((𝑓‘0) = (𝐹‘𝑢) ↔ (𝑓‘0) = 𝑥)) |
| 50 | 49 | anbi1d 631 |
. . . . . . 7
⊢ ((𝐹‘𝑢) = 𝑥 → (((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 51 | 50 | rexbidv 3179 |
. . . . . 6
⊢ ((𝐹‘𝑢) = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 52 | 51 | ralbidv 3178 |
. . . . 5
⊢ ((𝐹‘𝑢) = 𝑥 → (∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 53 | 52 | cbvfo 7309 |
. . . 4
⊢ (𝐹:∪
𝐽–onto→𝑌 → (∀𝑢 ∈ ∪ 𝐽∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 54 | 41, 53 | syl 17 |
. . 3
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 ∈ ∪ 𝐽∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹‘𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 55 | 48, 54 | mpbid 232 |
. 2
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)) |
| 56 | 35 | ispconn 35228 |
. 2
⊢ (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 57 | 2, 55, 56 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn) |