Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpconn Structured version   Visualization version   GIF version

Theorem cnpconn 35217
Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
cnpconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpconn ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn)

Proof of Theorem cnpconn
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 23128 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1135 . 2 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 eqid 2729 . . . . . . . . 9 𝐽 = 𝐽
43pconncn 35211 . . . . . . . 8 ((𝐽 ∈ PConn ∧ 𝑢 𝐽𝑣 𝐽) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
543expb 1120 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
653ad2antl1 1186 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
7 simprl 770 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔 ∈ (II Cn 𝐽))
8 simpll3 1215 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝐹 ∈ (𝐽 Cn 𝐾))
9 cnco 23153 . . . . . . . 8 ((𝑔 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑔) ∈ (II Cn 𝐾))
107, 8, 9syl2anc 584 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹𝑔) ∈ (II Cn 𝐾))
11 iiuni 24774 . . . . . . . . . . 11 (0[,]1) = II
1211, 3cnf 23133 . . . . . . . . . 10 (𝑔 ∈ (II Cn 𝐽) → 𝑔:(0[,]1)⟶ 𝐽)
137, 12syl 17 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔:(0[,]1)⟶ 𝐽)
14 0elunit 13430 . . . . . . . . 9 0 ∈ (0[,]1)
15 fvco3 6960 . . . . . . . . 9 ((𝑔:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
1613, 14, 15sylancl 586 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
17 simprrl 780 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘0) = 𝑢)
1817fveq2d 6862 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘0)) = (𝐹𝑢))
1916, 18eqtrd 2764 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘0) = (𝐹𝑢))
20 1elunit 13431 . . . . . . . . 9 1 ∈ (0[,]1)
21 fvco3 6960 . . . . . . . . 9 ((𝑔:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
2213, 20, 21sylancl 586 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
23 simprrr 781 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘1) = 𝑣)
2423fveq2d 6862 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘1)) = (𝐹𝑣))
2522, 24eqtrd 2764 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘1) = (𝐹𝑣))
26 fveq1 6857 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘0) = ((𝐹𝑔)‘0))
2726eqeq1d 2731 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓‘0) = (𝐹𝑢) ↔ ((𝐹𝑔)‘0) = (𝐹𝑢)))
28 fveq1 6857 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘1) = ((𝐹𝑔)‘1))
2928eqeq1d 2731 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓‘1) = (𝐹𝑣) ↔ ((𝐹𝑔)‘1) = (𝐹𝑣)))
3027, 29anbi12d 632 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ (((𝐹𝑔)‘0) = (𝐹𝑢) ∧ ((𝐹𝑔)‘1) = (𝐹𝑣))))
3130rspcev 3588 . . . . . . 7 (((𝐹𝑔) ∈ (II Cn 𝐾) ∧ (((𝐹𝑔)‘0) = (𝐹𝑢) ∧ ((𝐹𝑔)‘1) = (𝐹𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
3210, 19, 25, 31syl12anc 836 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
336, 32rexlimddv 3140 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
3433ralrimivva 3180 . . . 4 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 𝐽𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
35 cnpconn.2 . . . . . . . . 9 𝑌 = 𝐾
363, 35cnf 23133 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
37363ad2ant3 1135 . . . . . . 7 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
38 forn 6775 . . . . . . . 8 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
39383ad2ant2 1134 . . . . . . 7 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = 𝑌)
40 dffo2 6776 . . . . . . 7 (𝐹: 𝐽onto𝑌 ↔ (𝐹: 𝐽𝑌 ∧ ran 𝐹 = 𝑌))
4137, 39, 40sylanbrc 583 . . . . . 6 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽onto𝑌)
42 eqeq2 2741 . . . . . . . . 9 ((𝐹𝑣) = 𝑦 → ((𝑓‘1) = (𝐹𝑣) ↔ (𝑓‘1) = 𝑦))
4342anbi2d 630 . . . . . . . 8 ((𝐹𝑣) = 𝑦 → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4443rexbidv 3157 . . . . . . 7 ((𝐹𝑣) = 𝑦 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4544cbvfo 7264 . . . . . 6 (𝐹: 𝐽onto𝑌 → (∀𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4641, 45syl 17 . . . . 5 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4746ralbidv 3156 . . . 4 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 𝐽𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4834, 47mpbid 232 . . 3 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦))
49 eqeq2 2741 . . . . . . . 8 ((𝐹𝑢) = 𝑥 → ((𝑓‘0) = (𝐹𝑢) ↔ (𝑓‘0) = 𝑥))
5049anbi1d 631 . . . . . . 7 ((𝐹𝑢) = 𝑥 → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5150rexbidv 3157 . . . . . 6 ((𝐹𝑢) = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5251ralbidv 3156 . . . . 5 ((𝐹𝑢) = 𝑥 → (∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5352cbvfo 7264 . . . 4 (𝐹: 𝐽onto𝑌 → (∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5441, 53syl 17 . . 3 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5548, 54mpbid 232 . 2 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5635ispconn 35210 . 2 (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
572, 55, 56sylanbrc 583 1 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   cuni 4871  ran crn 5639  ccom 5642  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  [,]cicc 13309  Topctop 22780   Cn ccn 23111  IIcii 24768  PConncpconn 35206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-ii 24770  df-pconn 35208
This theorem is referenced by:  qtoppconn  35223
  Copyright terms: Public domain W3C validator