Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpconn Structured version   Visualization version   GIF version

Theorem cnpconn 35274
Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
cnpconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpconn ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn)

Proof of Theorem cnpconn
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 23156 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1135 . 2 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 eqid 2731 . . . . . . . . 9 𝐽 = 𝐽
43pconncn 35268 . . . . . . . 8 ((𝐽 ∈ PConn ∧ 𝑢 𝐽𝑣 𝐽) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
543expb 1120 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
653ad2antl1 1186 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))
7 simprl 770 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔 ∈ (II Cn 𝐽))
8 simpll3 1215 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝐹 ∈ (𝐽 Cn 𝐾))
9 cnco 23181 . . . . . . . 8 ((𝑔 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑔) ∈ (II Cn 𝐾))
107, 8, 9syl2anc 584 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹𝑔) ∈ (II Cn 𝐾))
11 iiuni 24801 . . . . . . . . . . 11 (0[,]1) = II
1211, 3cnf 23161 . . . . . . . . . 10 (𝑔 ∈ (II Cn 𝐽) → 𝑔:(0[,]1)⟶ 𝐽)
137, 12syl 17 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → 𝑔:(0[,]1)⟶ 𝐽)
14 0elunit 13369 . . . . . . . . 9 0 ∈ (0[,]1)
15 fvco3 6921 . . . . . . . . 9 ((𝑔:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
1613, 14, 15sylancl 586 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
17 simprrl 780 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘0) = 𝑢)
1817fveq2d 6826 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘0)) = (𝐹𝑢))
1916, 18eqtrd 2766 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘0) = (𝐹𝑢))
20 1elunit 13370 . . . . . . . . 9 1 ∈ (0[,]1)
21 fvco3 6921 . . . . . . . . 9 ((𝑔:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
2213, 20, 21sylancl 586 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
23 simprrr 781 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝑔‘1) = 𝑣)
2423fveq2d 6826 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → (𝐹‘(𝑔‘1)) = (𝐹𝑣))
2522, 24eqtrd 2766 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ((𝐹𝑔)‘1) = (𝐹𝑣))
26 fveq1 6821 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘0) = ((𝐹𝑔)‘0))
2726eqeq1d 2733 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓‘0) = (𝐹𝑢) ↔ ((𝐹𝑔)‘0) = (𝐹𝑢)))
28 fveq1 6821 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘1) = ((𝐹𝑔)‘1))
2928eqeq1d 2733 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓‘1) = (𝐹𝑣) ↔ ((𝐹𝑔)‘1) = (𝐹𝑣)))
3027, 29anbi12d 632 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ (((𝐹𝑔)‘0) = (𝐹𝑢) ∧ ((𝐹𝑔)‘1) = (𝐹𝑣))))
3130rspcev 3572 . . . . . . 7 (((𝐹𝑔) ∈ (II Cn 𝐾) ∧ (((𝐹𝑔)‘0) = (𝐹𝑢) ∧ ((𝐹𝑔)‘1) = (𝐹𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
3210, 19, 25, 31syl12anc 836 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑢 ∧ (𝑔‘1) = 𝑣))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
336, 32rexlimddv 3139 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 𝐽𝑣 𝐽)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
3433ralrimivva 3175 . . . 4 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 𝐽𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)))
35 cnpconn.2 . . . . . . . . 9 𝑌 = 𝐾
363, 35cnf 23161 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
37363ad2ant3 1135 . . . . . . 7 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
38 forn 6738 . . . . . . . 8 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
39383ad2ant2 1134 . . . . . . 7 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = 𝑌)
40 dffo2 6739 . . . . . . 7 (𝐹: 𝐽onto𝑌 ↔ (𝐹: 𝐽𝑌 ∧ ran 𝐹 = 𝑌))
4137, 39, 40sylanbrc 583 . . . . . 6 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽onto𝑌)
42 eqeq2 2743 . . . . . . . . 9 ((𝐹𝑣) = 𝑦 → ((𝑓‘1) = (𝐹𝑣) ↔ (𝑓‘1) = 𝑦))
4342anbi2d 630 . . . . . . . 8 ((𝐹𝑣) = 𝑦 → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4443rexbidv 3156 . . . . . . 7 ((𝐹𝑣) = 𝑦 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4544cbvfo 7223 . . . . . 6 (𝐹: 𝐽onto𝑌 → (∀𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4641, 45syl 17 . . . . 5 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4746ralbidv 3155 . . . 4 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 𝐽𝑣 𝐽𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = (𝐹𝑣)) ↔ ∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦)))
4834, 47mpbid 232 . . 3 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦))
49 eqeq2 2743 . . . . . . . 8 ((𝐹𝑢) = 𝑥 → ((𝑓‘0) = (𝐹𝑢) ↔ (𝑓‘0) = 𝑥))
5049anbi1d 631 . . . . . . 7 ((𝐹𝑢) = 𝑥 → (((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5150rexbidv 3156 . . . . . 6 ((𝐹𝑢) = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5251ralbidv 3155 . . . . 5 ((𝐹𝑢) = 𝑥 → (∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5352cbvfo 7223 . . . 4 (𝐹: 𝐽onto𝑌 → (∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5441, 53syl 17 . . 3 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑢 𝐽𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝐹𝑢) ∧ (𝑓‘1) = 𝑦) ↔ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
5548, 54mpbid 232 . 2 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5635ispconn 35267 . 2 (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑥𝑌𝑦𝑌𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
572, 55, 56sylanbrc 583 1 ((𝐽 ∈ PConn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   cuni 4856  ran crn 5615  ccom 5618  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  [,]cicc 13248  Topctop 22808   Cn ccn 23139  IIcii 24795  PConncpconn 35263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cn 23142  df-ii 24797  df-pconn 35265
This theorem is referenced by:  qtoppconn  35280
  Copyright terms: Public domain W3C validator