| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pconncn | Structured version Visualization version GIF version | ||
| Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| ispconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| pconncn | ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ispconn 35195 | . . . 4 ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 3 | 2 | simprbi 496 | . . 3 ⊢ (𝐽 ∈ PConn → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)) |
| 4 | eqeq2 2741 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑓‘0) = 𝑥 ↔ (𝑓‘0) = 𝐴)) | |
| 5 | 4 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦))) |
| 6 | 5 | rexbidv 3153 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦))) |
| 7 | eqeq2 2741 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝐵)) | |
| 8 | 7 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 9 | 8 | rexbidv 3153 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 10 | 6, 9 | rspc2v 3590 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝐽 ∈ PConn → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 12 | 11 | 3impib 1116 | 1 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∪ cuni 4861 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 Topctop 22796 Cn ccn 23127 IIcii 24784 PConncpconn 35191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-pconn 35193 |
| This theorem is referenced by: cnpconn 35202 pconnconn 35203 txpconn 35204 ptpconn 35205 connpconn 35207 pconnpi1 35209 cvmlift3lem2 35292 cvmlift3lem7 35297 |
| Copyright terms: Public domain | W3C validator |