Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconncn Structured version   Visualization version   GIF version

Theorem pconncn 33186
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
pconncn ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐽
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem pconncn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispconn.1 . . . . 5 𝑋 = 𝐽
21ispconn 33185 . . . 4 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
32simprbi 497 . . 3 (𝐽 ∈ PConn → ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
4 eqeq2 2750 . . . . . 6 (𝑥 = 𝐴 → ((𝑓‘0) = 𝑥 ↔ (𝑓‘0) = 𝐴))
54anbi1d 630 . . . . 5 (𝑥 = 𝐴 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦)))
65rexbidv 3226 . . . 4 (𝑥 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦)))
7 eqeq2 2750 . . . . . 6 (𝑦 = 𝐵 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝐵))
87anbi2d 629 . . . . 5 (𝑦 = 𝐵 → (((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
98rexbidv 3226 . . . 4 (𝑦 = 𝐵 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
106, 9rspc2v 3570 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
113, 10syl5com 31 . 2 (𝐽 ∈ PConn → ((𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
12113impib 1115 1 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   cuni 4839  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  Topctop 22042   Cn ccn 22375  IIcii 24038  PConncpconn 33181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-pconn 33183
This theorem is referenced by:  cnpconn  33192  pconnconn  33193  txpconn  33194  ptpconn  33195  connpconn  33197  pconnpi1  33199  cvmlift3lem2  33282  cvmlift3lem7  33287
  Copyright terms: Public domain W3C validator