Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pconncn | Structured version Visualization version GIF version |
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
ispconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
pconncn | ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ispconn 33185 | . . . 4 ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
3 | 2 | simprbi 497 | . . 3 ⊢ (𝐽 ∈ PConn → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)) |
4 | eqeq2 2750 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑓‘0) = 𝑥 ↔ (𝑓‘0) = 𝐴)) | |
5 | 4 | anbi1d 630 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦))) |
6 | 5 | rexbidv 3226 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦))) |
7 | eqeq2 2750 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝐵)) | |
8 | 7 | anbi2d 629 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
9 | 8 | rexbidv 3226 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
10 | 6, 9 | rspc2v 3570 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝐽 ∈ PConn → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
12 | 11 | 3impib 1115 | 1 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 Topctop 22042 Cn ccn 22375 IIcii 24038 PConncpconn 33181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-pconn 33183 |
This theorem is referenced by: cnpconn 33192 pconnconn 33193 txpconn 33194 ptpconn 33195 connpconn 33197 pconnpi1 33199 cvmlift3lem2 33282 cvmlift3lem7 33287 |
Copyright terms: Public domain | W3C validator |