Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconncn Structured version   Visualization version   GIF version

Theorem pconncn 35218
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
pconncn ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐽
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem pconncn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispconn.1 . . . . 5 𝑋 = 𝐽
21ispconn 35217 . . . 4 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
32simprbi 496 . . 3 (𝐽 ∈ PConn → ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
4 eqeq2 2742 . . . . . 6 (𝑥 = 𝐴 → ((𝑓‘0) = 𝑥 ↔ (𝑓‘0) = 𝐴))
54anbi1d 631 . . . . 5 (𝑥 = 𝐴 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦)))
65rexbidv 3158 . . . 4 (𝑥 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦)))
7 eqeq2 2742 . . . . . 6 (𝑦 = 𝐵 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝐵))
87anbi2d 630 . . . . 5 (𝑦 = 𝐵 → (((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
98rexbidv 3158 . . . 4 (𝑦 = 𝐵 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
106, 9rspc2v 3602 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
113, 10syl5com 31 . 2 (𝐽 ∈ PConn → ((𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
12113impib 1116 1 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054   cuni 4874  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  Topctop 22787   Cn ccn 23118  IIcii 24775  PConncpconn 35213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-pconn 35215
This theorem is referenced by:  cnpconn  35224  pconnconn  35225  txpconn  35226  ptpconn  35227  connpconn  35229  pconnpi1  35231  cvmlift3lem2  35314  cvmlift3lem7  35319
  Copyright terms: Public domain W3C validator