Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconncn Structured version   Visualization version   GIF version

Theorem pconncn 35192
Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
ispconn.1 𝑋 = 𝐽
Assertion
Ref Expression
pconncn ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐽
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem pconncn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispconn.1 . . . . 5 𝑋 = 𝐽
21ispconn 35191 . . . 4 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
32simprbi 496 . . 3 (𝐽 ∈ PConn → ∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
4 eqeq2 2752 . . . . . 6 (𝑥 = 𝐴 → ((𝑓‘0) = 𝑥 ↔ (𝑓‘0) = 𝐴))
54anbi1d 630 . . . . 5 (𝑥 = 𝐴 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦)))
65rexbidv 3185 . . . 4 (𝑥 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦)))
7 eqeq2 2752 . . . . . 6 (𝑦 = 𝐵 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝐵))
87anbi2d 629 . . . . 5 (𝑦 = 𝐵 → (((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
98rexbidv 3185 . . . 4 (𝑦 = 𝐵 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
106, 9rspc2v 3646 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
113, 10syl5com 31 . 2 (𝐽 ∈ PConn → ((𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)))
12113impib 1116 1 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076   cuni 4931  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  Topctop 22920   Cn ccn 23253  IIcii 24920  PConncpconn 35187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-pconn 35189
This theorem is referenced by:  cnpconn  35198  pconnconn  35199  txpconn  35200  ptpconn  35201  connpconn  35203  pconnpi1  35205  cvmlift3lem2  35288  cvmlift3lem7  35293
  Copyright terms: Public domain W3C validator