| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pconncn | Structured version Visualization version GIF version | ||
| Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| ispconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| pconncn | ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ispconn 35250 | . . . 4 ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
| 3 | 2 | simprbi 496 | . . 3 ⊢ (𝐽 ∈ PConn → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)) |
| 4 | eqeq2 2748 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑓‘0) = 𝑥 ↔ (𝑓‘0) = 𝐴)) | |
| 5 | 4 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦))) |
| 6 | 5 | rexbidv 3165 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦))) |
| 7 | eqeq2 2748 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝐵)) | |
| 8 | 7 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 9 | 8 | rexbidv 3165 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 10 | 6, 9 | rspc2v 3617 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝐽 ∈ PConn → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) |
| 12 | 11 | 3impib 1116 | 1 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ∪ cuni 4888 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 Topctop 22836 Cn ccn 23167 IIcii 24824 PConncpconn 35246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-pconn 35248 |
| This theorem is referenced by: cnpconn 35257 pconnconn 35258 txpconn 35259 ptpconn 35260 connpconn 35262 pconnpi1 35264 cvmlift3lem2 35347 cvmlift3lem7 35352 |
| Copyright terms: Public domain | W3C validator |