MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issgrpn0 Structured version   Visualization version   GIF version

Theorem issgrpn0 18359
Description: The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
issgrpn0.b 𝐵 = (Base‘𝑀)
issgrpn0.o = (+g𝑀)
Assertion
Ref Expression
issgrpn0 (𝐴𝐵 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem issgrpn0
StepHypRef Expression
1 issgrpn0.b . . . 4 𝐵 = (Base‘𝑀)
2 issgrpn0.o . . . 4 = (+g𝑀)
31, 2ismgmn0 18309 . . 3 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
43anbi1d 629 . 2 (𝐴𝐵 → ((𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
51, 2issgrp 18357 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
6 r19.26-2 3097 . 2 (∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
74, 5, 63bitr4g 313 1 (𝐴𝐵 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  cfv 6430  (class class class)co 7268  Basecbs 16893  +gcplusg 16943  Mgmcmgm 18305  Smgrpcsgrp 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-dm 5598  df-iota 6388  df-fv 6438  df-ov 7271  df-mgm 18307  df-sgrp 18356
This theorem is referenced by:  dfgrp3e  18656
  Copyright terms: Public domain W3C validator